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V sociologickém výzkumu, v sekundárních analýzách, v komparativních úlohách i při 
vyhodnocování experimentálních uspořádání sběru dat se velmi často vyskytují 
diskrétní znaménková data, která byla popsána v práci Řehák, Řeháková [1978], 
uvádějící též řadu různých ilustrujících příkladů a metody klasické statistiky pro 
základní vyhodnocení těchto dat.

Ve stati předkládáme alternativní metodu D zpracování těchto dat, založenou 
na bayesovských statistických základech. Bayesovský statistický přístup je v našem 
sociologickém výzkumu málo používán, přestože tvoří značnou a neoddělitelnou sou­
část moderní matematické statistiky; proto jej krátce charakterizujeme. Metoda je 
popsána v krocích, ve kterých ji aplikujeme v praxi a je též ilustrována numerickými 
příklady. Pro snadnou aplikaci metody uvádíme jednak základní tabulku A jednak 
pomocné tabulky normální distribuční funkce a normálních kvantilů (tabulky B a C). 
Uživatel v běžné výzkumné praxi vystačí většinou s těmito základními údaji a popi­
sem postupu. Matematické formulace jsou určeny metodologům a statistikům.

Metoda má své přednosti i nedostatky. Její aplikabilita závisí na konkrétní situaci, 
konkrétním výzkumníkovi a jeho znalostech o zkoumané populaci. K jejím výhodám 
patří:

— má jednoduchý princip odrážející běžný gnoseologický postup;
— je velmi snadno aplikovatelná v běžném hodnocení četností;
— umožňuje přímé spojení apriorní informace, znalostí, přesvědčení, pilotážní 

či předvýzkumné informace, které jsou závislé na sběru dat, s informací získanou 
z výběrového souboru;

— umožňuje formálně prokázat souvislost obou hlavních hypotéz, které jsou před­
mětem zájmu této stati.

K nevýhodám patří:
— je často obtížné určit vstupní parametry, které charakterizují sumu naší apriorní 

evidence a výzkumného přesvědčení.
Jde o metodu statistickou, přesto však největší nároky pro uživatele jsou ve sféře 

sociologického myšleni, neboť určování apriorních vah i interpretace aposteriorních 
rozhodnutí je věcí meritorní, nikoli formálně matematickou či věcí standardní rutiny.

1. Hypotézy o rozložení znaménkových dat a postup baycsovského uvažování o nich 

Znaménkový znak (označme jej S) charakterizujeme třemi hodnotami: ,,+“ = kladná 
kategorie, ,,0“ = neutrální kategorie, „—“ = záporná kategorie. Je to tedy tricho- 
tomický znak; je ordinální a má pevný střed (neutrální bod). Při jeho realizaci na da-

1) Metoda byla oznámena v přednášce Řehák, 
Řeháková [1972] a aplikována v otorinolaryngo- 
logickem výzkumu (Tománek [1971], [1972]). Ta­

bulka A, která je základem metody byla spočtena 
na počítači MINSK 22.
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ném výběrovém souboru dostáváme rozložení četností (absolutních či relativních, resp. 
procent) na těchto třech hodnotách. Dále budeme pracovat s relativními četnostmi, 
resp. s pravděpodobnostmi výskytu v populaci, ze které výběr pochází. Tak dostává­
me tři základní parametry rozložení četností:
(1) P (8 = „+“) = p+

P (8 = „0“ ) = po
P (S= ,,-“) = p-

které splňují podmínku p+ + po + P- = 1, p+ ^ 0, po 2? 0, p- > 0 (leží v tzv. sim- 
plexu třírozměrného prostoru).

Parametry charakterizují tedy obsazení polí (kategorií).
Ve výzkumné praxi nás zajímají především Hypotézy o existenci majoritní pravdě­

podobnosti; 2>
(2) Pí : p+ > i

H3 : po > *
H3 :p_>

Jestliže tyto hypotézy jsou příliš silné, pak nás zajímají slabší, ale meritorně též 
nemírně důležité hypotézy asymetrie; ,
(3) Hn : p+ > p- H5 :p+ <p_

Ho : P+ > Po Hq : p+ < p0
H8 :p-> po II9 :p_ <po

Z nich nejdůležitější jsou H4 a H5, které znamenají převahu v obsazení kategorie „ + “ 
nad kategorií ,, — “, nebo naopak. Tyto hypotézy porovnávají obsazení dvou kate­
gorií bez ohledu na obsazení třetí. Hi, H2, H3 znamenají ovšem silnější výpověď, 
neboť příjímáme-li hypotézu majoritní pravděpodobnosti, automaticky přijímáme též 
příslušnou hypotézu asymetrie (Je-li např. p+ > |, pak nutně musí být větší než p_ 
i Po).
Bayesovský přístup spočívá ve třech krocích:
1. Konstrukce modelu pro chování výběrových dat. ^3
2. Formulace apriorního názoru.
3. Matematické spojení obou předchozích kroků pomocí Bayesovy větyM

První krok je společný celé statistice jak klasické, tak Bayesovské, neboť každá 
statistická metoda je založena na jistých (buď velmi silných či velmi volných) 
předpokladech, které musíme při praktickém použití metod statistiky vždy prověřo- 
řovat (nejsou-li splněny předpoklady, metoda dává nesprávné podklady pro interpre­
taci). V našem případě je tento krok volen tak. aby metoda byla neparametrická a 
nebyla zatížená žádnými distribučními předpoklady.

Druhý krok znamená velmi obtížnou úvahu o tom, co víme či co si myslíme (apriori, 
aniž jsme viděli data) o parametrech našeho modelu. Je odpovědí na otázku: jaké vá­
hy položíme na jednotlivé možnosti pro trojice lp+, po, P-Y Některé z těchto trojic 
můžeme například vyloučit tím, že jim dáme váhu nula, či prakticky vyloučit tím, 
že jim dáme váhu velmi nepatrnou v poměru k jiným hodnotám.

2) Někdy nás zajímají také negace těchto 
hypotéz:
5i:p+<l/2, S2:p0<l/2, 53:p_<l/2 

nebo zobecnění, jímž se zde nezabýváme, ale které 
je možné pro kteroukoli z pravděpodobností 
H: pro dané «, b platí a < p < b .

3) V našem případě např. považujeme za vhodný 
model multinomického rozložení pravděpodobností;

po získání dat a dosazení empirických hodnot za 
příslušné parametry modelu dostáváme tzv. věro- 
hodnoatní funkci.

4> O Bayesovské statistice existuje velmi roz­
sáhlá literatura. Zájemcům doporučujeme ob­
zvláště práce De Groot [1974], Savage [1968], 
Schmitt [1969]. O problému apriorních pravdě­
podobností viz též ftehák [1974].

174



V praxi je užitečné a výhodné používat tzv. konjugovaného ^přirozeně sdruženého, 
spřaženého^ rozložení, které znamená výběr z určité třídy různých funkcí — výběr 
jedné váhové funkce, která nejlépe odpovídá našim apriorním zkušenostem, resp. 
názorům. (Zde použijeme tzv. Dirichletova rozložení, jak je zřejmé z matematické 
formulace úlohy; o tom, jak je možno zjednodušit některé úvahy o apriorním rozlo­
žení v našem konkrétním případě, pojednáme níže).

Třetí krok znamená matematické odvození aposteriorního rozložení a z něho pak 
odvození pravděpodobnosti žádané hypotézy.

Klasická statistika pracuje pouze se zvoleným modelem chování dat. s věrohodno- 
stní funkcí, která vzniká dosazením empirických hodnot do modelu a rozhoduje o hy­
potézách na základě této funkce.

Bayesovská statistika pracuje navíc ještě s apriorní informací o neznámých para­
metrech. Motivem pro to je především:
a) snaha modelovat postupnost vědeckého poznání a neustálého přibližování se 

k pravdě;
b) snaha rozhodovat o hypotézách na základě přímých indikací; zatímco klasická 

statistika rozhoduje na základě toho, jak pravděpodobným je výskyt obdržených 
dat za předpokladu dané hypotézy, bayesovská statistika rozhoduje na základě to­
ho, jakou podporu přinášejí data daná hypotézou, na základě toho, jak vysokou 
pravděpodobnost hypotézy můžeme z dat odvodit, tj. jaké váhy určují data pro 
zkoumané konkurující si hypotézy.

O úspěšnosti přístupu rozhodne ovšem sama dlouhodobá praxe vědeckého poznává­
ní. Bayesovský princip však podstatně zvyšuje nároky na uživatele a na jeho vztah 
ke statistické technice jakožto instrumentu poznání. Jednotlivé metody tohoto 
přístupu nejsou pouhými mechanickými nástroji, stávají se prostředkem dialogu mezi 
uživatelem a daty.

Vztah apriorního rozložení a empirických dat lze charakterizovat takto:
1. Jestliže máme málo pozorování, pak apriorní rozložení může být pouze málo 

ovlivněno, a tudíž v konečných závěrech se silné apriorní přesvědčení prosadí silněji 
než výzkumná datová evidence (to je ovšem paralela ke známému: věříme-li v určitou 
hypotézu, pak nás malý výběrový soubor nepřesvědčí o její neplatnosti; slabá empi­
rická evidence nemůže zvrátit náš silný názor).

2. Čím větší je soubor empirických dat, tím menší je vliv našeho apriorního pře­
svědčení na konečný výsledek. Apriorní názor má v konečném rozhodnutí stále menší 
váhu s tím, jak roste počet pozorování.

3. Je-li naše přesvědčení jednoznačné, tj. apriorní váha je pro jednu z možných 
alternativ rovna jedné (a všechny ostatní možnosti mají tedy nulovou apriorní váhu), 
pak empirická evidence nemá na aposteriorní rozhodnutí žádný vliv.

V jednotlivých případech je možné na apriorní názor či evidenci abdikovat, po­
tlačit jej, neuvažovat žádné preference předem. Také tehdy, je-li náš názor natolik 
neurčitý a natolik neformulovatelný, že nejsme schopni žádné preference formulovat, 
pak můžeme dát všem trojicím parametrů (p+, po, p~) stejnou váhu. 5> V takovém 
případě je závěr o hypotézách založen pouze na empirické evidenci.

Bayesovský přístup má různé varianty, z nichž některé jsou založeny na tom, 
že apriorní evidenci odhadujeme z jiných dat, některé se pokoušejí využít empirických 
četností z populace apod. Nebudeme zde rozlišovat na této obecné rovině, jaký je 
obsah apriorního vstupu: může to být jen vyjádření přesvědčení o platnosti hypotézy, 
stejně tak jako empirické údaje z pilotážního nebo předvýzkumného šetření.

5) Tento postup je založen na Bayesově postu­
látu o rovnoměrné neznalosti: „jestliže neznáš 
apriorní rozložení, dej všem možnostem stavu rea­

lity apriori stejnou váhu“; v diskutovaném případě 
je to rovnoměrné rozložení na simplexu trojic 
(P+, Po, P-Y
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2. Apriorní rozložení, význam jeho parametrů a jejich určení

Metoda vyhodnocení hypotéz o znaménkových datech je založena na tom, že rozhodu­
jeme na základě tří čísel,6> parametrů aposteriorního rozložení, jejichž význam vy­
plyne z následující úvahy.

Apriorní rozložení má stejný tvar jako aposteriorní, má stejné parametry, které 
se liší pouze číselnou hodnotou.
Aposteriorní hodnoty parametrů vznikají jako:

(4) N+ = m+ + w+, No = mo + ^o, Ar- = m- + n-,
kde m^, mg, m_ jsou parametry apriorního rozložení a »+, no, H- jsou empirické 
absolutní četnosti.
Tedy: aposteriorní _ absolutní

parametr četnost + apriorní 
parametr

Obojí parametry mají tedy roli četností (mají stejný rozměr). Apriorní názor vyjádří­
me pomocí rozložení četností:
a) je buď vzato z pilotáže, předvýzkumu, či je získáno nějakou drobnou sondou;
b) nebo je ekvivalentní našemu subjektivnímu zkušenostnímu pohledu na věc;

V tom případě je m+ : mo : m- poměr obsazení jednotlivých kategorií, tedy vy­
jadřuje náš názor, že

(5) p+ : p0 : p_ = m+ : m0 : m_

Součet

(6) m = m+ + mg + m_
pak charakterizuje předpokládanou „přesnost“, s níž jsme přesvědčeni o platnosti 
poměru (5). m je ekvivalentní velikosti výběrového souboru poskytujícího empirickou 
evidenci, která by byla stejně silná jako náš apriorní názor.

Nakonec rozhodujeme na základě hodnot (4). Získáváme je jako součet apriorních 
a empirických (resp. věrohodnostních) hodnot. Ze vzorce (4) vidíme, jak se příspěvky 
skládají ve statistický závěr, jak se posilují, či jak se vzájemně mohou potlačovat.

Chceme-li vyjádřit svůj apriorní názor pomocí postulátu rovnoměrné neznalosti, tj. 
položit na všechny trojice (p+, po, p_) stejnou váhu, pak toho dosáhneme volbou:

(7) m+ = mo = m_ = 1
Parametry mi (i = +, 0, —), a tedy i Ni, mohou být též necelá čísla. Pro praktické 
účely však stačí omezit se na celé kladné hodnoty. Parametry mt musí však být větší 
než nula a nejsou-li, pak musíme za ně dosadit nenulové číslo.

Například používáme-li m^ jako četnosti z pilotáže, pak je-li jedna hodnota nulo­
vá, je lépe ji zaměnit jedničkou. Praktické výsledky se tím nikterak podstatně ne- 
ovlivm.

Obdobně jako v (6) si ještě označíme: počet empirických pozorování jako n a součet 
aposteriorních parametrů jako N:

(8) n = n+ + no + n- ; N — N+ + No + N-

6) Matematicky orientovaného čtenáře odkazu­
jeme na Část 5 a na literaturu citovanou v poznám­
ce 4. Poznamenejme též, že označení ,.parametry“ 
má ve stati dvojí význam: a) parametry rozložení 
znaménkových dat: (p+, po, p-') jsou pravděpodob­

nostní obsazení, tj. jejich hodnoty jsou předmětem 
našeho výzkumného zájmu; b) parametry aprior­
ního a aposteriorního rozložení (nj, w<) určují, jaké 
váhy klademe a jaké jsme odvodili pro všechny 
trojice ^p^p^p-Y
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Klasické statistické metody často selhávají v praxi pro malé výběrové soubory. 
I když známe kritické hladiny různých testů pro malé soubory, tyto testy jsou málo 
silné, poskytují malou obranu proti chybě druhého druhu. To se obzvláště projevuje 
u souborů, které nejsou zcela homogenní (což je právě případ sociologických zkoumá­
ní). V takových případech je baeysovský přístup obzvláště cenný, neboť umožňuje 
studium souladu názoru a empirických dat. Též při odhadu založeném na tvaru 
a vlastnostech aposteriorního rozložení dostáváme při malých souborech lepší 
výsledky.

3. Metoda testování hypotéz Hy—Hg a odhad pravděpodobností p+, pg, p_.
Testování hypotéz bude založeno na tom, že k daným číslům N+, Ng, N- (viz (4)) 
najdeme pravděpodobnost platnosti příslušné hypotézy:

P = P (HilN+, Ng, NJ)
Nalezení hodnoty P se děje podle postupu níže popsaného. Je-li P dostatečně vysoká, 
pak H; můžeme přijmout. Je-li P velice malá, pak můžeme přijmout negaci hypoté­
zy II t.
A. Testováni hypotézy o majoritní pravděpodobnosti (Hi) a hypotézy asymetrie (Hy)

Krok 1:
Určíme hodnotu y (t < y < 1), která určuje rozhodovací pravidlo 7>
(9) pro P > y přijmeme II y (tj. p+ > |)

pro P ^ 1 — y přijmeme Hi (tj. p+ < |)
pro 1 — y < P < y nejsou data dostatečně informativní pro roz­

hodnutí o Hy resp. Hy
Krok 2:
Určíme své apriorní rozložení pomocí parametrů m+, mg, m_, a to bez ohledu na data; 
nechceme-li nebo nejsme-li schopni určit tyto hodnoty, volíme m+ = mg = m- = 1.

Krok 3:
Zjistíme empirické četnosti n+, ng, n_.
Krok 4:

Odvodíme aposteriorní parametry

N+ = m+ + n+, Ng = mg + ng, N_ = m- J- n_
Krok 5:
V tabulce A aposteriorních pravděpodobností nalezneme:
a) pro hypotézu Hy. pole v řádku s číslem N+ a ve sloupci s číslem (N — N+) 
b) pro hypotézu Hy. pole v řádku s číslem N+ a ve sloupci s číslem N-

7) Tento krok jo stále častěji vynecháván. Vý­
zkumník pak rozhoduje na základě aposteriorní 
hodnoty P: přímo uváží její hodnotu a podle ní 
přijme či nepřijme zkoumanou hypotézu. Tento 
postup je analogický tomu, že u klasických testů si 
nenecháme tisknout zprávu, zda např. chí-kvadrát 
je statisticky významný na určité hladině, ale 
necháme si vytisknout prostě samotnou hodnotu 
významnosti a podle ní se rozhodneme. To má 
vážné interpretační důsledky především tam, kde

současně hodnotíme řadu obsahově příbuzných 
proměnných, kde se u žádné proměnné neprojeví 
signifikantní průkaznost hypotézy, ale u všech se 
hodnoty k hladině významnosti blíží. I když v ta­
kové situaci nemáme statisticky prokazatelné vý­
sledky, máme novou interpretační základnu pro 
odhalení trendů, možných zákonitostí a důvod 
k další podrobnější analýze nebo ke zpřesňování 
měřicích nástrojů.
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Jestliže hodnoty vstupních parametrů překročí rozměry tabulky, použijeme aproxi­
mace, kterou dává lemma 3 (viz část 5):
a) rozhodneme se bud pro Gram-Charlierovu nabo Camp-Paulsonovu metodu apro­

ximace;
b) spočteme Y;
c) v tabulce distribuční funkce standardizovaného normálního rozložení (viz např. 

Janko [1958], Bolšev-Smirnov [1965], Kelley [1966]) nalezneme hodnotu 
P = 0 (F), která znamená požadovanou pravděpodobnost pro rozhodnutí.

Tabulka B obsahuje základní údaje o této funkci pro rychlou orientaci v praxi. 
(Domníváme se, že ve většině sociologických analýz bude tato tabulka postačující.)
Krok 6:

Aplikujeme pravidlo (9) určené v kroku 1:
bud přijmeme hypotézu, nebo přijmeme její negaci, nebo nemůžeme o dané hypo­
téze provést žádný závěr.

Z uvedeného postupu (krok 5) vidíme, že hypotézy Hy a H4 se prověřují zcela 
stejným způsobem; Hy : p+ > | znamená totéž co p+ > po + p_, tj. kladná katego­
rie má vyšší obsazení než zbývající dvě dohromady.

774 prověřujeme tak, že po vynechání prostřední, neutrální kategorie ,,0“, prověřu­
jeme 77] pro nové pravděpodobnostní obsazení

P'+ = P+
1 — Po

>p'- = P­
1 — Po ’

protože součet nových parametrů p’+ + j/- — 1. je tato hvpotéza stejná jako 
H:p'+>L

Postup pochopitelně můžeme použít na kteroukoli hypotézu 77] — Ho, a to prostou 
záměnou četností a použitím těch četností z trojice (A+, No, N-Y které dané hypotéze 
odpovídají.

Pro rozhodování pomocí normální aproximace nemusíme nutně vyhledávat hodno­
tu funkce 0 (F); stačí znát hodnotu Y a kvantily normální distribuční funkce F*. 
V tabulce C uvádíme nej důležitější hodnoty pro taková porovnání. Pak přijmeme 77, 
jestliže Y ^ Y* (což je ekvivalentní P ^ y, kde p = 0 (F*)).

B. Metoda odhadu parametrů

Metoda odhadu parametrů je založena na aposteriorních parametrech (AT+, No, N-Y 
Pro i — ,,+“, .,0“, „—“ platí:

(10) odhad pt : pt = Nt[N
~ Nt (N — NA

(11) variace odhadu: var m =--------- ---------
N2 (N + 1)

(12) směrodatná chyba: at = ^var pt = A! Nt {N-Ni) 
7V2(A + 1)

(13) kovariance dvou odhadů: cov (pť,P;) = —
Nj Nj

AT2(Y + 1)
(pro t ^ý)

Vzorce (10) určují nejlepší bayesovský bodový odhad. Vzorce (11) — (13) mohou být 
aplikovány pro konjidenční intervaly, pokud Nt jsou natolik velké, abychom aposteri- 
orní rozložení mohli přibližně aproximovat normálním rozložením (přibližně, je-li
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Tabulka .4: Aposterioml pravděpodobnosti P (p+ > p_[N+, N-), P (p+ > i/N+, N — N+)

1 2 3 4 5

1 ,50000000 .25000000 ,12500000 ,06250000 ,03125000
o ,75000000 ,50000000 ,31250000 ,18750000 ,10937600

,87500000 ,68750000 ,50000000 ,34375000 ,22656250
4 ,93750000 .81250000 ,65625000 ,50000000 ,36328125
5 ,96875000 ,89062500 ,77343750 ,63671875 ,60000000
0 .98437500 ,93750000 ,85546875 ,74609375 ,62304688
7 .99218750 ,96484375 ,91015625 ,82812500 ,72558594
8 ,99609375 ,98046875 ,94531250 ,88671876 ,80615234
9 .99804688 ,98925781 ,96728516 ,92700195 ,86657715

10 ,99902344 ,99414063 ,98071289 ,95385742 ,91021729
11 ,99951172 ,99682617 ,98876953 ,97131348 .94076638
12 .99975586 ,99829102 ,99353027 ,98242188 ,96169363
13 .99987793 ,99908447 ,99630737 .98936462 ,97647913
14 .99993896 ,99951172 ,99790955 .99363708 ,98466811
15 ,99996948 ,99974060 ,99882507 ,99623108 .99039459
16 .99998474 ,99986267 ,99934387 ,99778748 ,99409103
17 ,99999237 ,99992752 ,99963570 ,99871159 ,99640131
18 .99999619 ,99996185 .99979877 ,99925518 ,99782825
19 .99999809 ,99997997 ,99988937 ,99957228 ,99870026
20 .99999905 ■ ,99998951 ,99993944 ,99975586 ,99922806
31 .99999952 ,99999452 ,99996698 ,99986142 ,99954474
22 ,99999970 ,99999714 ,99998206 ,99992174 ,99973324
23 .99999988 ,99999851 ,99999028 ,99995601 ,99984463
24 .99999994 .99999923 ,99999475 ,99997538 ,99991000
25 ,99999997 ,99999960 ,99999717 .99998628 .99994814
26 ,99999999 ,99999979 ,99999848 ,99999239 ,99997026
27 1,00000000 ,99999989 ,99999919 ,99999578 ,99998302
28
29
30
31

1,00000000
1.00000000
1,00000000
1,00000000

,99999995 
,99999997 
.99999999

,99999956
,99999977

,99999768

- 6 7 8 9 10

1 ,01562500 ,00781250 00390625 ,00195313 ,00097656
2 ,06250000 ,03515625 01953125 ,01074219 ,00585938
3 ,14453125 ,08984375 ,05468750 ,03271484 ,01928711
4 ,25390625 ,17187500 .11328125 ,07299805 .046142Í8
O .37695313 ,27441406 ,19384766 ,13342285 ,08978271
6 ,50000000 ,38720703 ,29052734 ,21197510 ,15087891
7 .61279297 .50000000 .39526367 ,30361938 ,22724915
8 ,70947266 ,60473633 ,50000000 ,40180969 ,31452942
9 ,78802490 ,69638062 ,59819031 ,50000000 ,40726471

10 .84912109 ,77275085 ,68547058 ,59273529 ,50000000
11 ,89494324 ,83384705 ,75965881 .67619705 ,58809853
12 .92826843 ,88105774 ,82035828 ,74827766 ,66818810
13 .95187378 ,91646576 ,86841202 ,80834484 ,73826647
14 .96821594 ,94234085 ,90537643 ,85686064 ,79756356
15 .97930527 ,96082306 ,93309975 ,89498020 ,84627188
16 .98669815 ,97376060 ,95343018 ,92420519 ,88523853
17 .99154973 ,98265517 ,96804267 .94612393 ,91568123
18 .99468899 ,98867208 ,97835737 .96224065 ,93896094
19 .99669462 ,99268335 ,98552037 ,97388051 ,95642072
20 ,99796134 ,99532235 ,99042135 ,98215093 ,96928583
21 .99875304 ,99703769 ,99372952 ,98794023 ,97861302
22 .99924314 ,99814042 ,99593497 .99193760 ,98527532
23
24
25
26

,99954388
,99972695
,99983754
,99990391

,99884215 
.99928454 
,99956104

.99738856
,99833656

,99466308



Tabulka A! 2

- 11 12 13 14 15

1 ,00048828 ,00024414 ,00012207 ,00006104 ,00003052
2 ,00317383 ,00170898 .00091553 ,00048828 ,00025940
3 ,01123047 ,00646973 ,00369263 ,00209045 .00117493
4 ,02868652 ,01757813 ,01063538 ,00636292 ,00376892
5 ,05923462 ,03840637 ,02452087 ,01544189 ,00960541

1 6 ,10505676 ,07173157 ,04812622 .03178406 ,02069473
! 7 .16615295 ,11894226 ,08353424 ,05765915 .03917694

8 ,24034119 ,17964172 .13158798 ,09462357 ,06690025
9 ,32380295 ,25172234 ,19165516 ,14313936 .10501981

10 ,41190147 ,33181191 ,26173353 ,20243645 .15372813
i 11 ,50000000 ,41590596 ,33881974 .27062809 ,21217811
| 12 ,58409405 .50000000 ,41940987 ,34501898 ,27859855

13 ,66118026 ,58059013 ,50000000 ,42250949 ,35055402
14 ,72937191 ,65498102 ,57749051 ,50000000 ,42527701
15 ,78782189 ,72140146 ,64944598 ,5747 2299 ,50000000
16 ,83653021 ,77896583 ,71420591 ,64446445 ,57223222
17 ,87610572 ,82753577 ,77087084 .70766764 ,63994993
18 ,90753333 ,86753455 ,81920269 ,76343517
19 ,93197703 ,89975578 ,85947924
20 ,95063142 ,92519361
21 ,96462223

- 16 17 18 20

1 ,00001526 ,00000763 ,00000381 ,00000191 ,00000095
2 ,00013733 ,00007248 ,00003815 ,00002003 ,00001049
3 ,00065613 ,00036430 ,00020123 ,00011063 ,00006056
4 ,00221252 ,00128841 .00074482 .00042772 ,00024414
5 ,00590897 ,00359869 ,00217175 ,00129974 ,00077194
6 ,01330185 ,00845027 ,00531101 ,00330538 ,00203866
7 ,02623940 ,01734483 ,01132792 ,00731665 ,00467765
8 ,04656982 ,03195733 ,02164263 ,01447964 ,00957865
9 ,07579482 ,05387607 ,03775935 ,02611949 ,01784907

10 ,11476147 ,08431877 ,06103906 ,04357928 ,03071417
11 ,16346979 ,12389428 ,09246667 ,06802297 ,04936857
12 ,22103417 ,17246422 ,13246545 ,10024421 ,07480639
13 ,28579409 ,22912916 ,18079/30 ,14052076
14 ,35553555 ,29233235 ,23656483
15 42776777 ,36005006
16 ,50000000

- 21 22 23 24 25

1 ,00000048 ,00000024 ,00000012 ■ ,00000006 ,00000003
2 ,00000548 ,00000286 .00000149 ,00000077 ,00000040
3 ,00003302 ,00001794 ,00000972 ,00000525 ,00000283
4 ,00013858 ,000078 26 ,00004399 ,00002462 ,00001372
5 ,00045526 ,00026676 ,00015537 ,00009000 ,00005186
6 ,00124696 ,00075686 ,00045612 ,00027306 ,00016246
7 .00296231 ,00185958 ,00115785 .00071545 ,00043896
8 ,00627048 ,00406503 ,00261144 ,00166345
9 ,01205977 ,00806240 ■ ,00533692

10 ,02138697 ,01472469
11 ,03537777
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Tabulka A/3

26 27 28 29 30

1 .00000001 ,00000000 ,00000000 ,00000000 .00000000
2 ,00000021 ,00000011 ,00000006 ,00000003 .00000001
3 ,00000152 ,00000081 ,00000043 ,00000023
4 ,00000762 ,00000422 ,00000232
5 .00002974 .00001698
6 00009610

Tabulka B: Vybrané hodnoty <[> (Y) (3> (-Y) = 1-— 0 (Y))

Y 0 (Y) y 0 (Y) y $ (Y) Y 0 (Y)

0 0,5000 1,0 0,8413 2,0 0,9773 3,0 0,9987
0,1 0,5398 1,1 0,8643 2,1 0,9821 3,1 0.9990
0,2 0.5793 1,2 0,8849 2,2 0,9861 3,2 0,9993
0.3 0,6179 1,3 0,9032 2,3 0,9893 3,3 0,9995
0,4 0,6554 1,4 0,9192 2,4 0,9918 3,4 0,9997
0,5 0,6915 1,5 0,9332 2,5 0,9938 3,5 0,9998
0,6 0,7558 1,6 0,9452 2,6 0,9953 3,6 0,9998
0,7 0,7580 1.7 0,9554 2,7 0,9965 3,7 0,9999
0,8 0,7881 1,8 0,9641 2,8 0,9974 3,8 0,9999
0,9 0,8159 1,9 0,9713 2,9 9,9981 3,9 0,9999

Tabulka C: Vybrané kvantity normální distribuční funkce pro rozhodováni o překročeni prahové 
hodnoty

7 Y* y* s velkou přesností 7 y* y* s velkou přesností

0,5 0,000 0,0000 0000 0,995 2,576 2,5758 2930
0,6 0,253 0,2533 4710 0,999 3,090 3,0902 3231
0,7 0,524 0,5244 0051 0,9995 3,291 3,2905 2673
0,75 0,674 0,6744 8975 0,9999 3,719 3,7190 1649
0,80 0,842 0,8416 2123 0,9999 5 3,891 3,8905 919
0,85 1,036 1,0364 3339 0,9999 9 ■ 4,265 4,2648 908
0,90 1,282 1,28155157 0,9999 95 4,417 4,4171 734
0,95 1,645 1,6448 5363 0.9999 99 4,753 4,7534 243
0,975 1,960 1,9599 6398 0,9999 995 4,892 4,8916 385
0,99 2,326 2,3263 4787 0,9999 999 5,199 5,1993 376

Řádky odpovídají hodnotám prvního parametru (N+), sloupce odpovídají hodno.
tám druhého parametru (N_ resp. N — N+).
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Nt > 5 a N — Ni > 5, chceme-li zjistit aproximativní konfidenční interval 8> 
propť).

Konfidenční intervaly pro menší četnosti nutno hledat pomocí tabulek tzv. 
neúplné beta funkce (či odvozeně pomocí distribuční funkce binomického rozložení). 
Tento obtížný postup zde neuvádíme.

4. Příklad postupu rozhodování o hypotézách majoritní pravděpodobností
a asymetrie a odhadu parametrů

Ilustrace postupu testování různých hypotéz v této části má sloužit jako vodítko 
pro uživatele. Příklad je vzat z malé skupiny (dílny) o 25 respondentech. Názory na 
vliv zavádění automatizace byly zjišťovány mj. otázkami:
„Jak podle Vašeho názoru ovlivňuje automatizace
a) pracovní spokojenost (zvyšuje, nemá vliv, snižuje)?
b) možnosti pro mladé dělníky (zvyšuje, nemá vliv, snižuje)?“

Při rozhodování o hypotézách budeme postupovat podle kroků popsaných v před­
cházející části. Budou nás zajímat hypotézy o existenci majoritní (nadpoloviční) 
pravděpodobnosti, tj. názoru zastávaného více než padesáti procenty osob, a dále 
hypotéza o asymetrii, tj. převaha názoru na „zvyšování“ oproti „snižování“ nebo 
naopak.

Postup ukážeme souběžně pro oba uvedené dotazy:

Krok 1:

Prahovou hodnotu pro přijetí rozhodnutí y položíme rovnu y = 0.999.

Krok 2:

V pilotážním šetření bylo dotazováno několik málo nahodile vybraných dělníků. 
Výsledky nemají žádnou analytickou cenu, ale můžeme je použít jako základ pro 
určení parametrů apriorního rozložení. Byla však položena pouze otázka o vlivu 
automatizace na pracovní spokojenost (otázka a)). Z pěti rozhovorů byli tři odpovědi 
v kategorii „+“ a dvě v kategorii „0“. Dosadíme proto m+ = 3, nio = 2; vzhledem 
k tomu, že kategorie,, — “ nebyla obsazena, dosadíme automaticky nt_ = 1.

Druhá otázka (b) o vlivu automatizace na „možnosti pro mladé dělníky“ nebyla 
v pilotáži položena. Nemáme zformulován ani žádný názor o odpovědích respondentů. 
Proto použijeme Bayesův postulát „o stejnoměrné neznalosti“, tj. přiřadíme apriori 
všem trojicím parametrů stejné váhy; toho docílíme tak. že položíme m+ = my = 
= m- = 1.

Krok 3:
Získání a sumarizace empirických dat — řízený rozhovor a třídění dat.

Krok 4:

Výpočet aposteriorníeh parametrů je patrný z tabulek 1 a 2. V případech některých 
hypotéz je hned na první pohled vidět, že nemá význam testování provádět. Uvádíme 
je zde jen pro ilustraci postupu.

V tabulce A vyhledáme apostriorní pravděpodobnosti pro jednotlivé hypotézy. 
Sumarizace je dána v tabulce 3.

8> Konfidenční interval 100(1 — «) % iná tvar nalezneme např. v tabulce C v práci Řehák, Ře-
Pt ± Za/2 Ca hodnoty koeficientu za/2 (což je horni ková [1978]).
a/2 kvantil standardního normálního rozložení)
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Tabulka 1: Názory na ovlivněni pracovní spokojenosti

Kategorie Zhoršuje 
(-)

Zůstává 
stejná 

(0)

Zvyšuje 
( + )

Součet

Apriorní parametry /m,/ 1 2 3 6

Četnosti (ni) 5 8 12 25

Aposteriorní parametry (Nil 6 10 15 31

Tabulka 2: Názory na ovlivnění možnosti pro mladé dělníky

Kategorie Zhoršuje 
(-)

Zůstává 
stejné 

(0)

Zvyšuje 
( + )

Součet

Apriorní parametry /mil 1 1 1 3

Četnosti (nil 3 1 20 24

Aposteriorní parametry (Nil 4 2 21 27

K dané hypotéze (I. sloupec) nejprve určíme dvojici parametrů pro vyhledávání 
aposteriorní pravděpodobnosti (v tab. 3 je ve druhém sloupci uvedena obecně 
symbolicky, ve třetím sloupci pak jsou dány konkrétní hodnoty parametrů odvozené 
z tabulek 1 a 2). První parametr vystupuje jako číslo řádku tabulky A (čtvrtý sloupec) 
druhý parametr jako číslo sloupce tabulky A (viz pátý sloupec v tab. 3). V posledním 
sloupci je uvedena aposteriorní posloupnost, na jejímž základě rozhodujeme o přísluš­
né hypotéze; najdeme ji v tabulce A v daném řádku a sloupci.

Na vybraných případech z tabulky 3 ukážeme oba způsoby aproximace aposterior- 
ních pravděpodobností normálním rozložením uvedené v lemě 3 v části 5. V tabulce 
4 a 5 je O = P(H). Aposteriorní parametry značíme Ni a N^.

A) Aproximace Gram-CKarUerovým rozvojem
Tabulka 4 ukazuje tři kroky postupu aproximace: a) určení parametrů (sloupec 1), 
b) výpočet hodnoty Y (sloupec 2), c) nalezení hodnoty standardní normální distri­
buční funkce, 9> která aproximuje hledanou pravděpodobnost P. Ve čtvrtém sloupci 
uvádíme rozdíl mezi aproximovanou hodnotou a přesnou hodnotou získanou z tabul­
ky A.

9) Hodnoty funkce </> byly získány z tabulek 
Janko [1958]. Proto byl výraz ve druhém sloupci 
vypočten na dvě desetinná místa (tedy značně ne­
přesně). Nebyla prováděná interpolace v tabulkách. 
Existuji ovšem tabulky daleko přesnější, zde jsme 
však volili běžný a rutinní postup s nejsnáze dostup­
nými tabulkami u nás. Gram-Char lierova trans-

formace je pro náš speciální případ (p = 1/2) to­
tožná s původní Laplaceovou transformací, umož­
ňuje však přesnější odhad maximální absolutní 
chyby. Přesnost je oproti údaji v lemě 3 ještě dále 
zvýšena, neboť pro p = 1/2 je binomické rozložení 
symetrické a k normálnímu se blíží velmi rychle.
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Tabulka 3: Určení aposteriorních pravděpodobností vybraných hypotéz pro data tabulky 1 a tabulky 2

„Vliv automatizace na pracovní spokojenost“

Hypotéza
Parametry 

aposteriorních 
rozložení

Hodnoty 
para­
metrů

Řádek 
tabulkyA

Sloupec 
tabulkyA

Aposteriorní 
pravdě­

podobnost

P* 5> i (N+, N - NA (15,16) 15 16 .4278

po :> i (No, N - No) (10,21) 10 21 .0214

p- '> i (N_, N - N-) (6,26) 6 25 .0002

p* > P- (N+, N-) (15,6) 15 6 .9793

„Vliv automatizace na možnosti pro mladé dělníky“

P* :> i (N+, N - N+) (21,6) 21 6 ’ .999

Po"> i (No, N - No) (2,26) 2 25 .0000004

p-:> i (N-, N - N_) (4,23) 4 23 .000044

P+ > P- (N+, N_) (21,4) 21 4 .99986

B) Aproximace Camp-Paulsonova

V tabulce 5 ilustrujeme nejpřesnější praktickou aproximaci binomického rozložení 
normálním. Postup je analogický tabulce 4; výpočet hodnoty Y však je proveden 
ve třech krocích (sloupce 2—4).

Tato transformace je přesnější právě u extrémních pravděpodobností.
Kdybychom chtěli v našem případě aplikovat (ekvivalentně) tabulku C (nejsou-li 

např. po ruce podrobnější tabulky funkce 0), pak pro náš případ postupujeme 
jednoduše:

a) pro 7 = 0.999 je 7*0.999 = 3.090
b) pro 1 — y = 0.001 je 7*o.ooi = — 7*0.999 = — 3.090

Proto platí, že P (=0) ^ .999, právě když Y ^ 3.090 a P < .001, právě když 
7^-3.090.

Pro data v tabulce 5 je 7 — X (3 ^Zy1, a tudíž máme evidenci pro přijetí hypotézy 
p- < | pro „spokojenost“ a hypotézy po < j, P- < i pro „.možnosti pro mladé 
dělníky.“

Pomocí aproximace tabulky 4 docházíme ke stejnému výsledku. V obou případech 
se výsledky liší od přesných hodnot. V tabulce 3 přijímáme pro znak „možnosti pro 
mladé dělníky“ i hypotézu pv > ^.Tato ztráta informace je tedy způsobena numeric­
ky (!), použitím aproximačních formulí.
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Implikace jsou dvě:
— nepoužívejme nikdy aproximaci tam, kde máme k dispozici jednoduchou a přímou 

metodu >;10

Tabulka 4: Postup výpočtu aproximace Gram-Charlierovým rozvojem (viz lema 3)

Parametry 
(^i, N - Xi)

2Ni - N
N - 1

0 Absolutní chyba*)

(15,16) - 0,18 0,42858 0,00081

(10,21) - 2,01 0,02222 0,00083

(6,25) - 3,47 0,0002602 0,0000977

. (21,6) 2,94 0,998359 0,000394

(2,25) - 4,51 0,000003241 0,000002841

(4,23) - 3,73 0,00009574 0,00005175

*) absolutní chyba = | přesná hodnota — aproximovaná hodnota |

Tabulka 5: Postup Camp-Paulsonovy transformace (viz lema 3)

*) absolutní chyba = | přesná hodnota — aproximovaná hodnota |

Parametry 
(-Vi, AT - Á-j) X Z X (3pZ)-í <I> Absolutní 

chyba*)

(15,16) - 0,1943 0,1264 - 0,182 0,42858 0,00081

(10,21) - 2,0024 0,1086 — 2,025 0,02118 0,000207

(6,25) - 3,4706 0,0688 - 4,410 0,000005169 0,000157

(21,6) 4,7590 0.2764 3,017 0,998736 0,000017

(2,25) - 5,2975 0,1328 - 4,845 0,0000006173 0,00000022

(4,23) - 4,0724 0,1214 - 3,896 0,00004810 0,00000411

10> To platí pro celou statist iku. Známý příklad 
je použiti chi-kvadrátu místo přesného Fischerova 
testu u málo obsazených kontingenčnich tabulek 
2x2 nebo použiti normálního z-testu místo Stu­

dentova t-testu v případě testování hodnoty prů­
měru normálního rozložení při malém počtu pozo­
rování.
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Tabulka 6: Postup odhadu pravděpodobnosti p+, po> P- pro údaje z tabulek 1 a 2 („Spokojenost" 
a „Moínosti pro mladé" )

„Vliv automatizace na pracovní spokojenost“

Pi hodnota parametruVi odhad py směrodatná 
odchylka odhadu

přibližný interval 
spolehlivosti11) s 95%

P+ 15 .484 .088 . (.312, .656)

Po 10 .323 .082 (-162,-484)

P- 6 .194 .070 (-057,-331)

„Vliv automatizace na možnosti pro pladé dělníky“

P+ 21 .778 .079 (.623,-933)

Po 2 .074 .049 (nelze použít)

P- 4 .148 .067 (nelze použít)

— je výhodnější pracovat s hodnotou P: i když Y nepřekročí odpovídající hranici. 
P může být tak blízko ke zvolenému y, že hypotézu stejně přijmeme, přestože P < y.

Krok 5:
Rozhodnutí pro y = 0.999; přijímáme tyto výroky o parametrech:
a) znak „spokojenost“: H3 '. p- < ^
b) znak „možnosti pro mladé“: Hy :p+ > ^

Ha • Po < i
H3 :p_ <| 
Hy : p+ > p_

V tomto případě však jsou výroky H^, H3 a Hy důsledkem výroku Hy. Můžeme tedy 
říci, že názor o zhoršení spokojenosti nedosáhne 50 %, zatímco názor o zvýšení 
možností pro mladé dělníky je majoritní (přesahuje 50 %).

Kdybychom na přijetí hypotézy nebyli tak přísní, mohli bychom přijmout 
i hypotézu asymetrie v případě znaku spokojenosti, tj. názor na zlepšení převažuje 
nad názorem na zhoršení. ■

Odhad parametrů provádíme jednoduchým dosazením do vzorců (10) a (12): 
postup je naznačen v tabulce 6.
5. Statistický model a teoretické základy metody

Tato část je věnována především matematicky se orientujícímu čtenáři: Znak 8 má 
tři parametry, které zde budeme značit py, p3, p3 (s korespondencí py = p-, p3 = po 
p3 = P+V Předpokládáme, že data vznikají jako n- násobné nezávislé realizace 
náhodného pokusu (re je dáno) a že hodnoty těchto realizací, Sy, 82,..., Sn mohou

W Přibližný interval spočítáme jako: odhad p; ^ 1,96 x směrodatná odchylka odhadu.
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I

být sumarizovány pomocí výsledných absolutních četností nt (= počet pozorování 
v kategorii), m + ;i2 + «3 = n. Za tohoto předpokladu má trojice (m, n2, >13) 
multinomické rozloženi pravděpodobností.

(14) P (n\, na, nalpi, pa, pal =------—------p"1 p"_" p"3
«1! n2! ??3!

Pro bayesovskou inferenci a parametrech pt volíme konjugované (přirozeně sdružené) 
apriorní rozložení, které dává dostatečně širokou třídu dvourozměrných Dirichleto- 
vých rozložení reprezentující pro praktické úlohy dostatečně široké spektrum tvarů.
Letna 1. Budiž rozložení trojice (rai, n2, n^ multinomické, dané vzorcem (14). Apriorní 
rozložení náhodných veličin (pi, p2, p^ nechť je dvourozměrné Dirichletovo rozložení 
s hustotou
,. r t 1 \ (^1 4™ ^2 4“ ^3) 1 mg—1 mg—1
(15) Jd (pi, P2, Psími, ma, m^ = —------ ------- -------px 1 p8 - p3 3

V (mi) 1 M I (m3)
na simplexu Q (viz (1)), Jd = 0 mimo Q. Přitom Fix) je gamma funkce a mt jsou 
reálné kladné parametry. Aposteriorní rozložení náhodných veličin (pi, p2, ps) je opět 
Dirichletovo s parametry Ai, A2, A3, kde Nt = ni + m< (pro i = 1, 2, 3), tedy

v . r (Ai + N2 + A 3) y ! Ng-i ni_i(10) Jd (Pí-P2- Psi Ni, N2, N 3) = „ -.p,1 p2 p,
I (N^F^Ní) I (A3)

Základní vlastnosti Dirichletova rozložení popisuje S. S. Wilks [Wilks 1962], Očeká­
vané hodnoty, variace a covariance jsou dány formulemi (10) —(13), které je možno 
použít pro úlohu aposteriorního odhadu parametrů.

Pro testování majoritní pravděpodobnosti Ip : pi > | použijeme lemu 2.
Letna 2 (znaménkový test pro hypotézu existence majoritní pravděpodobnosti). Za před­
pokladů lemy 1 a vztahu (14) platí pro aposteriorní pravděpodobnosti 
(17) P (pi < ^Ni, N,, A3) = (i)^-1 NS (A?)

•i=Nx

(18) P(pi> kINi, Ní, A3)= (»^-1 S(V)
i=0

= PB ix < Nil^, N - 1) .
(19) = F íi^N-NO , 2N,( N^! )

kde Pr je distribuční funkce binomického rozložení s parametry | a A — 1 a Fg.h (z) 
je distribuční funkce Fisher-Snedecorova F — rozložení s (.g, h) stupni volnosti.

Pravděpodobnosti jsou dány v tabulce A pro N ^ 32. Mimo rozsah tabulky může­
me buď použít speciálních tabulek binomického resp. F — rozložení, nebo některou 
z mnoha možných normálních aproximací, z nichž základní a nej praktičtější uvádíme 
v lemě 3.

Letna 3. Binomickou pravděpodobnost (18) můžeme aproximovat některou z násle­
dujících metod (značíme 0 (z) kumulativní distribuční funkci normálního standard­
ního rozložení A (0,1)):
A. Gram-Charlierův rozvoj s korekcemi pro spojitost 
(20) P (Hi/Ni, N - Ai) = 0 (F) ,

v 2Ax-Akde 1 = —, -—

absolutní chyba < 0,112 (A — l)-^
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B. Camp-Paulsonova aproximace

(21) PUhlNi, N — Ni)~^(X ^Vzr1'),

N^N-Ni) N - N!

absolutní chyba < 0,014 (N — 1) ^

Odkazy na jednotlivé metody zde neuvádíme a odkazujeme čtenáře na přehlednou 
práci [Johnson, Kotz 1969].

Camp-Paulsonova transformace je přesnější než Gram-Charlierova, je i přesnější 
než další běžné a známé transformace, například transformace aresinová či Freeman- 
-Tukeyho zlepšení aresinové transformace.

Camp-Paulsonova transformace je zdánlivě komplikovaná, avšak za pomoci mo­
derních kalkulaček je výpočet velice rychlý. Pro praxi tuto metodu doporučujeme, 
i když pro velké soubory je metoda Gram-Charlierova postačující.

Po výpočtu hodnoty Y (resp. X (3 \Zp ’) jako argumentu funkce, nalezneme 
hodnotu funkce <I> v tabulkách normální distribuční funkce s průměrem'0 a rozptylem 
1. Tyto tabulky jsou v téměř každé učebnici statistiky a ve statistických tabulkách 
(např. Janko [1958]). Základní hodnoty funkce viz tabulka B.

Věta (znaménkový test pro hypotézu asymetrie) Za předpokladů a značení lemy 1 
a vztahu (14) s empirickými četnostmi ni, m, n3 platí pro aposteriorní pravděpodob­
nosti

Ni-1
(22) P (pí > pafNi, N2, N3) = 2 

k=o
Ni + N3- k-2 

N3 - 1

V + A’= - 1 - k

YP3-1 ~m /—yv*+jA \ n3 -1 m 2 /
(23) = Pnb (N ^ Ni - 1/1, N3 - 1) =

(24) = PB (X ž N3Jp = i, M - 1) =

(25)
M-l 

= (i)*v"1 2 k=N4
I 31 — 1
\ k

kde 31 = Ni + N3
Pnb = distribuční funkce negativně binomického rozložení 
PB = distribuční funkce binomického rozložení.

Důkaz:

K důkazu věty použijeme základních vlastností Dirichletovy hustoty, neúplné beta 
funkce a negativního binomického rozložení.

Za platnosti předpokladů je apriorní hustota rozložení trojice náhodných veličin 
pi, P2, pa dvourozměrné Dirichletovo rozložení s parametry Ni, Na, N3 dané vztahem 
(8), (Nt = mt + 7ií).
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Pak
(34) P =P (pi > p3(Ni, Na, N3)

= f I f---------¿T^ „pi^i-1 p2^~> p^*-1 dpidp2dp3
J J J r (^0 r (Na) r (n3)
Px >Pa 
Pi > 1-P3

Postup je založen na integraci výrazu (34) s využitím základních vztahů pro neúpl­
nou beta funkci

P =--------- LAM---------  / p^3-1 / p'^11 (1 — px — Ps^1-Ydpi dp3
r (N^ r (n2) r (n3) J 3 J 1 ’ 1 '

0 Pa .
1 —Pa

Označíme ^ pA1"1 (1 — Pi — p^3'1-1 dpi = IMx_ i, Ml-1

Pa

Integrací per partes a postupným dosazením dostaneme

^-i, n,-i= — P^N1-X (1 — 2p3)N= Hí------Inv-2, n, =
Na Na

= v -------V*! ~ l]fc-------  p^- 1-7; (1 _ 2p3)W

[A2 + j._ 1]jfcu

kde [Jf]fc = 31 (31 - 1).. .(Jí - k + 1)
[Jf]o = 1

Použitím výsledku12)
i
2

y p3Nx3-Na-2-k (i _ 2p3) ATa+fc ¿p3 — (per partes)

o
= (|)^i+^=-i-fc . Be (Ni + N3 - 1 - k, Na + 1 + ¿) =
_ (IVi + ^3 -2-ky. (Na + ¿)! /Jl\Nx-V-n3-i-i£

(N - 1)! \ 2 /
dostaneme dále13>

/ PS^-VjVr-l, A'2-l ^3 = 2 í -M-------íh_ . p^+Na-75-2 . (^ _ 2p3)^a+& dp3 =
J J [-^2 + i]*+l
0 0

= 2 J^kzJK ^! + AT3 - 2 - ky. (Na + ky. / 1 \^+N3-i-fe
- [^2 + fc]í+i " (A* - 1) ! \ 2 )

_N^-! (Ni 4- jV3 - 2 - A)! (Na - 1)! [AI - l]fc / i ^i+^-i-í

— k=o (N - 1) ! \ 2 /

12> Be je značení pro beta funkci. 13) Následující sumy jsou provedeny od k =0 
do k = Ni — 1.
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Pravděpodobnost P vznikne násobením tohoto výsledku konstantou výrazu (26)
p ^-i (^1 + 7v3_2-í) f
“n = ----------------------------------t-o (^ - 1 - í)! (2V3 - 1)!

1 ^ + ^3-1-1
2 )

Pravděpodobnost Pn je distribuční funkce negativně binomického rozložení s para­
metry p — | a N3. Je to tedy pravděpodobnost, že při náhodném opakování jevu 
s pravděpodobností p = | potřebujeme nejvýše Ni + N3 — 1 pokusů, abychom 
dosáhli N3 úspěchů.

Vztahy (24) a (25) plynou z pravděpodobnostních identit vztahujících negativně 
binomické a binomické rozložení.

Poznámky k aplikaci věty 1

1. Aposteriorní pravděpodobnost H4 je pro parametry Ny, Na, N3 stejná jako 
pravděpodobnost Hy pro parametry Vj, 0, A3. Pro rozhodnutí o hypotéze II4 
používáme stejný postup jako pro Hy, pouze redukujeme N o hodnotu Na, tj. 
o „počet“ odpovědí v neutrální kategorii.

2. Platí zde všechny poznámky u lemy 2 pro situaci, v níž V zaměníme hodnotou 
31 = Ni + N3. Též aproximace z lemy 3 provádíme zcela obdobně.

3. Aposteriorní pravděpodobnost H4 můžeme obdobně vyjádřit též distribucí 
Fisher-Snedecorovou.

4. Je zřejmé, že výsledek lze použít symetricky pro libovolnou z hypotéz H4 — H», 
a to tak, že prostě zaměníme indexy u příslušných parametrů.

5. Kromě uvedených transformací binomického rozložení lze také použít transfor­
maci inverzního hyperbolického sinu navrženou Anscombem [1948].

Závěry

Znaménkový test, který byl ve stati odvozen na základě bayesovského principu 
statistické inference, umožňuje tedy neparametrické vyhodnocování jednorozměrných 
distribucí diskrétního znaménkového znaku. Umožňuje testovat hypotézy asymetrie 
i existenci majoritní pravděpodobnosti. V případě potřeby může být zobecněn na 
obecné hypotézy tvaru p+ > c, resp. na hypotézy 0 < p+ < a, a < p+ < b, b < 
<p+ < 1, kde a, b jsou předem zvolené konstanty. Použití takovýchto hypotéz 
je však relativně málo časté, a proto příslušné testy neuvádíme.

Postupy popsané v této stati je ovšem možno použít i pro libovolné nominální 
znaky: jsou-li py, pa,.... pk pravděpodobnosti pro 1,2, . . .. í-tou kategorii nomi­
nálního znaku a chceme-li zjistit, zda platí hypotéza^ > | pro některé i nebo hypo­
téza pt > Pj pro některou dvojici kategorií, aplikujeme uvedený postup pro Nt, 
N — Nt, resp. pro Nt, Nf, tyto parametry vznikají obdobně jako u znaménkových 
dat: Nt = mt + nt, mt charakterizují apriorní názor na pravděpodobnosti obsazení 
polí a m jsou empirické četnosti.

Stejně tak lze aplikovat i postup pro odhad parametrů pt a jeho směrodatných 
chyb. Metodu lze použít na porovnávání příslušných kategorií rozšířeného znamén­
kového znaku jako alternativu pro rozklad chí-kvadrátového kritéria symetrie rozlo­
žení, viz [Řehák, Řeháková 1978],
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Vhodnost metody a její přednosti i nedostatky ve srovnání s jinými postupy mohou 
být prověřeny pouze další praktickou zkušeností a kritickým metodologickým 
zhodnocením používám. Pro velké soubory dat budou výsledky klasického i bayesov - 
ského testování většinou shodné. Rozdíly se projeví především u malých datových 
souborů. A právě zde se může metoda vhodně doplňovat s postupy klasické statistiky. 
Je to však metoda obtížná právě tím. že při formulování apriorních vah vyžaduje 
hluboké uvažování zcela nerutinního charakteru, chceme-li ji využít v celé její síle.
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PeaioMe
Patera« fl.—PateraKOBa B.: Kpiirepnii anaKOB no Baiiecy

B crane BbiBOgnrca nogxog k openKe gannbix anapoBoro nina no Baiiecy. AnocTepnopuoe 
pacnpegegepne ocposano na ýynKpnn npangonogoGpa MOgegp MygLmHOMPHecKoro pac- 
npegegemia n anpiiopporo pacnpegegenna flnpnxgea. 9ro pacnpegegenne gga p+, p0, p- 
HBgaerca ocnoBoii gaa crarncrinecKiix BWBOgOB 06 arnx napanerpax. jlncKpernaa anauo- 
Baa nepe.Meiinaa aagaerca rpnxoroMiieii c nogoatnTegbnoii, HeiiTpagbHon n orpnparegbHoii 
Kareropneii; BepoarnocTb ocyrpecrBgeHiia b arnx nareropnax oGoanaHaerca cooTBercrBeHHO 
p+, p0, p— B crarbe onncanM Merogu npoBepioi rnnorea o cymecTBOBaniin npeo6gagaiom,eii 
Bepoarnocrn (nanp., p+ > |) n acPMerpim (p+ > p_). Onncana n pojib openra.

B nepBon Haem crarbii npnBognrca oGman ngea nogxoga Baiieca, Koropaa sareM 06- 
cyatgaerca b cbhsii c gannoů npoGgeMoii. B cgegyioipeii naern oGbacneno anaHenne anpnop- 
noro pacnpegegenna n ero napanerpoB. IIpoBepKa rnnorea gga BMHienpiiBegennbix aagan 
omicMBaercH no inarait ran, nan ona npoBOgnrca na npaitriiKe. B aron naerp npnnegepa 
raGgnpa anocrepnopnux Bepoariiocreii (raGgnpa A) p raGgppa naGpaunnix apaHepnii 
KyMyaamBHon ýyppppn paeppegegenna crangapmoro nopMagbPoro pacnpegegemia 
(raGgnpa B), gagee Bantneiinine KsaprngM aroro paenpegegenna (raGgnga C). B gewe 3 
npnBegeHM gBa cnocoóa HopMagbnoii anpoKcnMaunn anocrepnopiibix BepoHTHocreii; anpo- 
KCHMauiiH KaMn-Hayghcona peKOMengyerca kbk ropaago Gogee roanaa.

Paanbie cnocoGbi ncnogbaoBainia Meroga nggrocrpnpyioTca na uyMepmiecKOM npnMcpe, 
KoropbiM gogaten oGgeranTb nogbaoBanne nerogOM. MareMarinecKaa ^opuygnpoBKa Meroga 
ocnoBana na cBogKe n upmieneHini naBecraux cbomctb b genax 1—3 n b reopeMe, Koropaa 
gaer ochobhoh pesyghrar gga npoBepnn accnMerpim (npnnegeHO n ee coupamennoe go- 
KasaregbCTBo).

Merog Kpurepna anaKOB no Baiiecy angaerca agbrepnamBon KgaccinecKoro Kpnrepna 
3H3KOB w gpyrnx Merogoe anagnaa anaKOBbix gannux, csogna Koropax cogepatnrca b pa- 
Gore Patera«, PateraKOBa (1978).
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Summary

Řehák J. — Řeháková B.: A Bayesian Sign Test
In the paper, a Bayesian approach to the discrete sign data is developped. Using 
the two-dimensional Dirichlet prior distribution with parameters m+, m0, m_ and 
the multinominal model for data behaviour, the posterior distribution of p+, p0, p­
is utilized for inference about these unknown quantities. Having denoted pro­
babilities of occurrence in positive, neutral and negative categoriy of the tricho­
tomy representing discrete sign variable as p+, p0, p-, the testing hypotheses 
P+ > 2 , Po > 2 , P- > 2 and comparisons like p+ > p_ are treated. The 
estimation problem is handled as well.

The first part introduces the general idea of Bayesian inference: next, the prior 
distribution and possible meaning of its parameters is shown for the problem. The 
testing for asymmetry (eg. p+ > p-) and for the existence of majority probability 
(eg. p+ > i ) is exposed in steps for practical use. In this part the table of 
aposterior probabilities as function of two aposterior parameters (Table A) and 
selected values of standard normal cumulative distribution function and its selected 
quantiles (Tables B and C) are presented.

In lemma 3, the normal approximations of posterior probabilities are reviewed and 
the Camp-Paulson method recommended. The method is illustrated by a numerical 
example giving a guide to user.

Mathematical formulation consists in a summary and applications of well known 
statistical properties in lemmas 1 to 3 and in theorem which gives the results 
necessary for testing asymmetry (the abridged proof is presented).

The method is an alternative to the classical sign test and various other methods 
for analysis of sign data which were reviewed in Řehák, Řeháková [1978].
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