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V sociologickém vyzkumu, v sekundarnich analyzach, v komparativnich tilohdch i pii
vyhodnocovéni experimentdlnich uspofaddni sbéru dat se velmi casto vyskytuji
diskrétni znaménkové data, kters byla popsina v praci Rehdk, Rehakova [1978],
uvadéjici téZ Fadu rtznych ilustrujicich piikladi a metody klasické statistiky pro
zékladni vyvhodnoceni téchto dat.

Ve stati predkladdme alternativni metodu 1) zpracovani téchto dat, zaloZenou
na bayesovskych statistickych zikladech. Bayesovsky statisticky piistup je v nasem
sociologickém vyzkumu maélo pouzivan, pfestoZe tvofi znacnou a neoddélitelnou sou-
tast moderni matematické statistiky; proto jej kratce charakterizujeme. Metoda je
popsana v krocich, ve kterych ji aplikujeme v praxi a je téz ilustrovéana numerickymi
ptiklady. Pro snadnou aplikaci metody uvddime jednak zékladni tabulku A jednak
pomocné tabulky normalni distribuéni funkce a normalnich kvantili (tabulky B a C).
Uzivatel v bézné vyzkumné praxi vystaéi vétSinou s témito zakladnimi idaji a popi-
sem postupu. Matematické formulace jsou uréeny metodologim a statistikim.

Metoda m4 své piednosti i nedostatky. Jeji aplikabilita zdvisi na konkrétni situaci,
konkrétnim vyzkumnikovi a jeho znalostech o zkoumané populaci. K jejim vyhoddm
patii:

— m4 jednoduchy princip odrizejici béiny gnoseologicky postup;

— je velmi snadno aplikovatelnd v béZném hodnoceni Cetnosti;

— umoZiiuje piimé spojeni apriorni informace, znalosti, presvéddéeni, pilotdZni
&1 predvyzkumné informace, které jsou zavislé na shéru dat, s informaci ziskanou
z vybérového souboru;

— umotziiuje formalné prokazat souvislost obou hlavnich hypotéz, které jsou pied-
métem zajmu této stati.

K nevyhoddm patii:

— je Gasto obtiZné uréit vstupni parametry, které charakterizuji sumu nasi apriorni
evidence a vyzkumného presvédéeni.
Jde o metodu statistickou, piesto v8ak nejvétsi naroky pro uzivatele jsou ve sféie

soctologického myé$lent, nebot urtovani apriornich vah i interpretace aposteriornich
rozhodnuti je véci meritorni, nikoli formélné matematickou &i véci standardni rutiny.

1. Hypotézy o rozlozeni znaménkovych dat a postup bayesovského uvazovani o nich

Znaménkovy 2nak (oznatme jej S) charakterizujeme t¥emi hodnotami: ,,+4‘ = kladnd
kategorie, ,,0° = neutrilni kategorie, ,,—‘ = zaporni kategorie. Je to tedy tricho-
tomicky znak; je ordindlni a m4 pevny stied (neutralni bod). Pii jeho realizaci na da-

1) Metoda byla oznémena v pfednéice Rehék, bulka A, kterd je zdkladem metody byla spodtena
Rehékova [1972] a aplikovéna v otorinolaryngo- na poé&fta¢i MINSK 22,
logickem vyzkumu (Tomének [1971], {1972]). Ta-
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ném vybérovém souboru dostdvame rozloZeni ¢etnosti (absolutnich &irelativnich, resp.
procent) na téchto tfech hodnotéch. Déle budeme pracovat s relativnimi éetnostmi,
resp. s pravdépodobnostmi vyskytu v populaci, ze které vybér pochdzi. Tak dostavi-
me t¥i zdkladni parametry rozloZeni ¢etnosti:
(1) P (S=,,+%) = p+

P (8= ,0)=po

P (S= ,,—“) == p_

které spliuji podminku ps+ + po + p-= 1, p+ =0, po = 0, p— = 0 (lezi v tzv. sim-
plexu tiirozmérného prostoru).
Parametry charakterizuji tedy obsazeni poli (kategorii).
Ve vyzkumné praxi nés zajimaji pfedev8im hypotézy o existenci majoritni pravdé-
podobnosti: 2)
(2) Hi:p:> 1%
Hy:po >3
Hy:p->1%

Jestlize tyto hypotézy jsou piilis silné, pak nds zajimaji slabsi, ale meritorné téz
nemirné dilezité hypotézy asymetrie: .

(3) Hy:p+ > p- Hs:py <p-
He:pr > po He:pr < po
Hg:p- > po Hy : p- < po

Z nich nejdilezitéjsi jsou Hy a H s, které znamenaji pievahu v obsazeni kategorie ,, +*
nad kategorii ,,—*‘, nebo naopak. Tyto hypotézy porovnévaji obsazeni dvou kate-
gorii bez ohledu na obsazeni tieti. H;, Hz, H3z znamenaji oviem silnéj$i vypovéd,
nebot prijimame-li hypotézu majoritni pravdépodobnosti, automaticky pfijimdme téz
pifisludnou hypotézu asymetrie (Je-li napf. p; > i, pak nutné musi byt vétsi nez p_
lpo)

Bayesovsky pfistup spotiva ve tiech krocich:

1. Konstrukce modelu pro chovani vybérovych dat.3)

2. Formulace apriorntho ndzoru.
3. Matematické spojeni obou piedchozich krokit pomoci Bayesovy véty. Y

Prvni krok je spoleény celé statistice jak klasické, tak Bayesovské, nebot kazda
statistickd metoda je zaloZena na jistych (bud velmi silnych ¢ velmi volnych)
piedpokladech, které musime pii praktickém pouziti metod statistiky vzdy provéio-
fovat (nejsou-li splnény predpoklady, metoda dava nespravné podklady pro interpre-
taci). V nasem piipadé je tento krok volen tak. aby metoda byla neparametricks a
nebyla zatiZend zadnymi distribuénimi predpoklady.

Druhy krok znamena velmi obtiznou ivahu o tom, co vime &i co si myslime (apriori,
aniz jsme vidéli data) o parametrech naseho modelu. Je odpovédi na otdzku: jaké vd-
hy polozime na jednotlivé moZnosti pro trojice (p+, po, p-). Nékteré z téchto trojic
muzeme naptiklad vylouéit tim, Ze jim ddme vdahu nula, ¢i prakticky vylouéit tim,
Ze jim ddme vahu velmi nepatrnou v poméru k jinym hodnotam.

2) Nékdy nas zajimaji také negace téchto  po ziskdni dat a dosazeni empirickych hodnot za

hypotéz:

Hy:p: <12, Ho:pg<<1/2, Hg:p_ <1/2
nebo zobecnéni, jimz se zde nezabyvame, ale které
je mozné pro kteroukoli z pravdépodobnosti
H:prodanéa,bplatia <p < b.

3) V naSem pripadé napf. povaZujeme za vhodny
model multinomického rozloZenf pravdépodobnosti;

.
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pHsludné parametry modelu dostivame tzv. véro-
hodnostn{ funkei.

4) 0 Bayesovské statistice existuje velmi roz-
sahld literatura. Zijemetm doporudujeme ob-
zvlidté prace De Groot [1974], Savage [1968],
Schmitt [1969]. O problému apriornich pravdé-
podobnost{ viz té2 Rehak [1974].



V praxi je uzitetné a vyhodné pouzivat tzv. konjugovaného (ptirozené sdruZeného,
spfafeného) rozlofeni, které znamend vybér z uréité t¥idy riznych funkei — vybér
jedné vahové funkce, ktera nejlépe odpovidd nasim apriornim zkuSenostem, resp.
nédzorim. (Zde pouzijeme tzv. Dirichletova rozloZeni, jak je zfejmé z matematické
formulace tlohy; o tom, jak je moZno zjednodusit nékteré uvahy o apriornim rozlo-
Zeni v nasem konkrétnim piipadé, pojednidme niZe).

Treti krok znamend matematické odvozeni aposteriorniho rozlozeni a z ného pak
odvozeni pravdépodobnosti Zddané hypotézy.

Klasicka statistika pracuje pouze se zvolenym modelem chovéani dat, s vérohodno-
stni funkei, kterd vznika dosazenim empirickych hodnot do modelu a rozhoduje o hy-
potézach na zékladé této funkce.

Bayesovska statistika pracuje navic jesté s apriorni informaci o neznamych para-
metrech. Motivem pro to je pfedeviim:

a) snaha modelovat postupnost védeckého poznini a neustdlého piibliZovadni se
k pravdé;

b) snaha rozhodovat o hypotézich na zikladé pfimych indikaci; zatimeco klasickd
statistika rozhoduje na z4dkladé toho, jak pravdépodobnym je vyskyt obdrzenych
dat za piedpokladu dané hypotézy, bayesovskd statistika rozhoduje na zédkladé to-
ho, jakou podporu piindseji data dana hypotézou, na zakladé toho, jak vysokou
pravdépodobnost hypotézy muZeme z dat odvodit, tj. jaké vahy urcuji data pro
zkoumané konkurujici si hypotézy.

O uspésnosti pistupu rozhodne oviem sama dlouhodoba praxe védeckého pozniva-
ni. Bayesovsky princip v8ak podstatné zvy&uje niroky na uZivatele a na jeho vztah
ke statistické technice jakoZto instrumentu poznéni. Jednotlivé metody tohoto
plistupu nejsou pouhymi mechanickymi ndstroji, stavajf se prostfedkem dialogu mezi
ufivatelem a daty.

Vztah apriorniho rozlozeni a empirickych dat lze charakterizovat takto:

1. Jestlize mdme madlo pozorovani, pak apriorni rozloZeni muZe byt pouze madlo
ovlivnéno, a tudiz v koneénych zavérech se silné apriorni pfesvédéeni prosadi silnéji
nez vyzkumnid datové evidence (to je ovéem paralela ke zndmému: véfime-li v uréitou
hypotézu, pak nds maly V\?bérovy soubor nepresvéddi o jeji neplatnosti; slaba empi-
rickd evidence nemuze zvratit nas silny nézor).

2. Cim v&t3i je soubor empirickych dat, tim mensi je vliv nageho apriorniho ple-
svéddeni na koneény vysledek. Apnorm nizor ma v konetném rozhodnuti stdle mensi
vahu s tim, Jak roste pocet pozorovani.

3. Je-li nase presvédéeni jednoznaéné, tj. apriorni vaha je pro jednu z moznych
alternativ rovna jedné (a vSechny ostatni moznosti maji tedy nulovou apriorni vihu),
pak empirickd evidence nemd na aposteriorni rozhodnuti Zadny vliv.

V jednotlivych piipadech je moZné na apriorni nazor &i evidenci abdikovat, po-
tlait jej, neuvaZovat zddné preference pfedem. Také tehdy, je-li nas nizor natolik
neurdity a natolik neformulovatelny, Ze nejsme schopni zZadné preference formulovat,
pak muzeme dét vSem trojicim parametri (p+, po, p-) stejnou vahu. ® V takovém
piipadé je zavér o hypotézach zaloZzen pouze na empirické evidenci.

Bayesovsky piistup md rtzné varianty, z nichZz nékteré jsou zaloZeny na tom,
ze apriorni evidenci odhadujeme z jinych dat, nékteré se pokouseji vyuiit empirickych
¢etnosti z populace apod. Nebudeme zde rozliSovat na této obecné roving, jaky je
obsah apriorniho vstupu: miiZe to byt jen vyjadieni pfesvédéeni o platnosti hypotézy,
stejné tak jako empirické idaje z pilotdZniho nebo predvyzkumného Setteni.

5) Tento postup je zaloen na Bayesové postu-  lity aprioristejnou vahu*; v diskutovaném piipads
litu o rovnomérné neznalosti: ,jestlife nezna$ je to rovnomérné rozloZenf na simplexu trojic
apriorni rozloZeni, dej viem moznostem stavu rea- (P+, POy P-)-
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2. Apriorni rozloZeni, vyznam jeho parametrd a jejich uréeni

Metoda vyhodnoceni hypotéz o znaménkovych datech je zaloZena na tom, Ze rozhodu-
jeme na zdkladé t¥i Ciscl,® parametrt aposteriorniho rozloZeni, jejichZz.vyznam vy-
plyne z nisledujici tivahy.

Apriorni rozloZeni m4 stejny tvar jako aposteriorni, md stejné parametry, které
se li8i pouze éisclnou hodnotou.
Aposteriorni hodnoty parametr vznikaji jako:

4) Ny=my + ny, No=mg + ng, N- = m_ + n_,
kde my, mp, m_ jsou parametry apriorntho rozloZeni a n., mg, n_ jsou empirické
absolutni ¢etnosti.

Tedy: aposteriorni __ absolutni
parametr ~ Cetnost

apriornt
parametr

+

Oboji parametry maji tedy roli Eetrosti (maji stejnyj rozmér ). Apriorni ndzor vyjadii-
me pomoci rozloZeni ¢etnosti:
a) je bud vzato z pilotdZe, pledvyzkumu, ¢ je ziskdno néjakou drobnou sondou;
b) nebo je ekvivalentni naemu subjektivnimu zkuSenostnimu pohledu na véc;
V tom piipadé je m. : mg : m_ pomér obsazeni jednotlivych kategorii, tedy vy-
jadiuje nad nazor, ze

(5) Pt 1P IP-= My Mg I M=
Soucet
(6) m= my + mg + m—

pak charakterizuje predpoklidanou ,,piesnost”, s niz jsme piesvédéeni o platnosti
poméru (5). m je ekvivalentni velikosti vybérového souboru poskytujicilio empirickou
evidenci, kterd by byla stejné silnd jako na§ apriorni nazor.

Nakonec rozhodujeme na zdkladé hodnot (4). Ziskdvdme je jako soucet apriornich
a empirickych (resp. vérohodnostnich) hodnot. Ze vzorce (4) vidime, jak se pfispévky
skladaji ve statisticky zdvér, jak se posiluji, & jak se vzdjemné mohou potlatovat.

Chceme-li vyjadrit sviy) apriorni ndzor pomoci postuldtu rovnomérné neznalosti, tj.
poloZit na v8echny trojice (p+, po, p-) stejnou vahu, pak toho dosahneme volbou:

(7 Mmy = myg= m_= 1

Parametry m; (: = +, 0, —), a tedy i N;, mohou byt téZ necela &isla. Pro praktické
tdely vSak sta¢i omezit se na celé kladné hodnoty. Parametry m; musi viak byt vétsi
nez nula a nejsou-li, pak musime za né dosadit nenulové &islo.

Napiiklad pouzZivame-li mz2 jako Cetnosti z pilotdZe, pak je-li jedna hodnota nulo-
vé, je lépe ji zaménit jedni¢kou. Praktické vysledky se tim nikterak podstatné ne-
ovlivni.

Obdobné jako v (6) si jesté oznacéime: potet empirickych pozorovéni jako n a soucet
aposteriornich parametra jako N:

(8) n=mny+n9+n-; N=UNi+ Nog-+-N_

8) Matematicky orientovaného étenife odkazu-  nostni obsazeni, tj. jejich hodnoty jsou pfedmétem
jeme na &ast § a na literaturu citovanou v pozndm. naseho vyzkumného zdjmu; b) parametry aprior-
ce 4. Poznamenejme té%, e oznadeni ,,parametry* nfho a aposteriorniho rozloZen{ (ng, my) urdujf, jaké

mé ve stati dvojl vyznam: a) parametry rozlozen{ vahy klademe a jaké jsme odvodili pro viechny
znaménkovych dat: (p4, po. P-) jsou pravdépodob- trojice (p+, Po, P-)-
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Klasické statistické metody dasto selhiavaji v praxi pro malé vybérové soubory.
I kdyz zndme kritické hladiny riznych testd pro malé soubory, tyto testy jsou maélo
silné, poskytuji malou obranu proti chybé druhého druhu. To se obzvldsté projevuje
u soubort, které nejsou zcela homogenni (coZ je pravé pripad sociologickych zkouma-
ni). V takovych piipadech je baeysovsky ptistup obzvlisté cenny, nebot umoziuje
studium souladu ndzoru a empirickych dat. Téz pii odhadu zaloZeném na tvaru
a vlastnostech aposteriorniho rozloZzeni dostdvime pfi malych souborech lepsi
vysledky.

3. Metoda testovani hypotéz [{;— Hy a odhad pravdépodobnosti p., po, P...
Testovani hypotéz bude zaloZeno na tom, Ze k danym &éislam N4, No, N_ (viz (4))
najdeme pravdépodobnost platnosti prislu$né hypotézy:

P=P(HN,, Nog, N)
Nalezeni hodnoty P se déje podle postupu nize popsaného. Je-li P dostatetné vysoka,
pak H; maZeme piijmout. Je-li P velice mala, pak maZeme p¥ijmout negaci hypoté-
zy Hj.
A. Testovdani hypotézy o majoritni pravdépodobnosti (H1) a hypotézy asymetrie (Hi)

Krok 1:
Uréime hodnotu y (§ <y < 1), kterd uréuje rozhodovaci pravidlo ?

9) pro P =y piijmeme H; (tj. ps > %)
pro P <1 — 9 piijmeme H; (tj. ps < 1)
prol —y < P <y nejsou data dostatetné informativni pro roz-
hodnuti o H, resp. H;

Krok 2:

Uréime své apriorni rozloZeni pomoci parametr( m., mg, m-, a to bez ohledu na data;
nechceme-li nebo nejsme-li schopni uréit tyto hodnoty, volime my = mp = m_ = 1.

Krok 3:
Zjistime empirické ¢etnosti ny, no, n—.

Krok 4:
Odvodime aposteriorni parametry

Ny=my 4 ny, No=mo+ny, No=m_ + no
Krok 5:
V tabulce A aposteriornich pravdépodobnosti nalezneme:

a) pro hypotézu H;: pole v fadku s &islem N a ve sloupci s ¢islem (N — Ny)
b) pro hypotézu Hy: pole v fadku s éislem N4 a ve sloupei s ¢islem N-—

?) Tento krok je stale dastdji vynechavan., Vy-
zkumnik pak rozhoduje na zaklad® aposteriorni
hodnoty P: pfimo uvéazi jeji hodnotu a podle ni
pfijme ¢&i nepfijme zkoumanou hypotézu. Tento
postup je analogicky tomu, e u klasickych vestii si
nenechéme tisknout zpravu, zda napi. chi-kvadrat
je statisticky vyznamny na uréitéd hlading, ale
nechdme si vytisknout prosté samotnou hodnotu
vyznamnosti a podle nf se rozhodneme. To mé
vainé interpretaéni diusledky predevifm tam, kde

sou¢asnd hodnotime Fadu obsahové pribuznych
proménnych, kde se u z4dné proménné neprojoevi
signifikantui prakaznost hypotézy, ale u véech se
hodnoty k hladindé vyznamnosti blizi. I kdyZ v ta-
kové situaci nemdme statisticky prokazatelné vy-
sledky, mame novou interpretaé¢nf zdkladnu pro
odhaleni trend(i, moinych zakonitostfi a duvod
k dalsi podrobndjsi analyze nebo ke zpresfiovani
moFicich ndstroju.
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Jestlize hodnoty vstupnich parametri pi‘ékroéi rozméry tabulky, pouZijeme aproxi-
mace, kterou dédva lemma 3 (viz ¢ast 5):

a) rozhodneme se bud pro Gram-Charlierovu nabo Camp-Paulsonovu metodu apro-
ximace;

b) spoéteme Y;

¢) v tabulce distributni funkce standardizovaného normélniho rozloZeni (viz napi.
Janko [1958], Bolfev-Smirnov [1965], Kelley [1966]) nalezneme hodnotu
P = & (Y), kterd znamend pozadovanou pravdépodobnost pro rozhodnuti.

Tabulka B obsahuje zakladni widaje o této funkei pro rychlou orientaci v praxi.
(Domnivéme se, Ze ve vét8ing sociologickych analyz bude tato tabulka postatujici.)

Krok 6:

Aplikujeme pravidlo (9) uréené v kroku 1:
bud pfijmeme hypotézu, nebo piiimeme jeji negaci, nebo nemuzeme o dané hypo-
téze provést Zadny zaveér.

Z uvedeného postupu (krok 5) vidime, Ze hypotézy H; a Hj se provéiuji zcela
stejnym zpusobem; H; : py. > 1 znamend totéz co p+ > po -+ p-, tj. kladna katego-
rie mé vyssi obsazeni nez zbyvajici dvé dohromady.

H, provéfujeme tak, Ze po vynechani prostiedni, neutralni kategorie ,,0°, provéfu-
jeme H; pro nové pravdépodobnostni obsazeni

’ ’ p_
p+:__‘71+_>p_:___.
1—po 1 —p

protoZe soudéet novych parametri p’.. - p’— = 1, je tato hypotéza stejnd jako
H:pr>1.

Postup pochopitelné maZeme pouzit na kteroukoli hypotézu Hy — Hg, a to prostou
zaménou ¢etnosti a pouzitim téch éetnosti z trojice (N, No, N_), které dané hypotéze
odpovidaji.

Pro rozhodovéani pomoei normalni aproximace nemusime nutné vyhledavat hodno-
tu funkce @ (Y); staci znat hodnotu Y a kvantily normélni distribuéni funkee Y'*.
Y tabulce C uvadime nejdulezitéjsi hodnoty pro takova porovnéani. Pak pfijmeme H,
jestlize ¥ = Y* (coz je ekvivalentni P = y, kde p = @ (Y*)).

B. Metoda odhadu parametri

Metoda odhadu parametrii je zaloZena na aposteriornich parametrech (N4, No, N_).
Proi=,,+°, .,0° ,,—* plati:

(10) odhad p; : p; = NyN

~ N (N —-N
{11) variace odhadu: var p; = M

NZ2(N 4 1)
__|/N{(N—Ny)
(12) smeérodatnd chyba: oy = Vvar pi= Vm
. ~ o~ Ny N, ..
13) kovariance dvou odhadi: cov (ps, pj) = — ———— (pro ¢ # j)
(13) Pt> P N N4 D) (p J

Vzorce (10) uréuji nejlepsi bayesovsky bodovy odhad. Vzorce (11) — (13) mohou byt
aplikovany pro konfidenént intervaly, pokud Ny jsou natolik velké, abychom aposteri-
orni rozloZeni mohli pfiblizné aproximovat normdlnim rozloZenim (piiblizné, je-li
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Tabulka A: A posteriornl pravdépodobnosti P (py > p_[N+, N_), P (p+ > }/N+y N — Ny)
1 2 3 4 b
1 ,60000000 ,25000000 ,12600000 ,06250000 ,03125000
2 , 78000000 ,50000000 ,312560000 ,18750000 ,109375600
3 ,87500000 ,868750000 ,60000000 ,34375000 ,2265662560
4 ,93750000 ,81250000 ,66625000 ,60000000 ,36328126
] ,96873000 ,89062500 ,77343750 ,636718756 ,60000000
6 .98437500 ,93750000 ,85646875 ,74609375 ,62304688
7 99218750 ,96484375 ,9101565626 ,82812500 ,72558694
8 ,996093758 ,08046875 ,945312560 ,88671875 ,80615234
9 .99804688 L98925781 ,96728516 ,92700195 ,86657715
10 99902344 ,994140063 ,98071289 ,96385742 ,91021729
11 ,99951172 ,90682617 ,88876953 ,97131348 ,94076538
12 99975586 ,00820102 ,99353027 ,98242188 ,96169363
13 ,99987703 ,99908447 ,99630737 ,98936462 ,97547913
14 99093896 ,999561172 ,99790955 .99363708 ,98455811
15 ,99996948 ,90974060 ,99882507 ,99623108 ,99039459
16 .99998474 ,99986267 ,99934387 ,99778748 ,99409103
17 ,99999237 .99992752 ,99963570 ,99871159 ,99640131
18 -99999619 ,99996185 ,99979877 ,999256618 ,99782825
19 ,99999809 ,09997997 ,99988937 ,99957228 ,99870026
20 ,99999008 - ,99998951 ,99993944 ,999755686 ,99922806
31 00999932 00999452 ,99996698 ,99986142 ,990564474
22 ,99998076 ,99999714 ,99998206 ,99992174 ,99973324
23 ,99999988 ,90999851 ,99999028 ,99995601 ,99984463
24 ,99999994 .99999923 ,99999475 ,99997638 ,99991000
25 ,09999997 ,00899960 ,99999717 ,99998628 .99994814
26 ,99999999 ,09999979 ,99999848 ,99999239 ,99997026
27 1,00000000 ,99999989 ,99999919 ,99999578 ,99998302
28 1,00000000 ,99699995 ,999999566 ,99999768
29 1,00000000 ,99999997 ,99999977
30 1,00000000 .99999999
31 1,00000000
- 6 7 8 9 10
1 ,01562500 ,00781250 00390625 ,00195313 ,00097656
2 ,06250000 ,035156256 019563125 ,01074219 ,00585938
3 , 14453125 ,080843756 ,(154637560 ,03271484 ,01928711
4 .253906825 , 17187500 ,11328125 ,07299805 ,046142L8
5 37695313 ,27441406 ,19384766 ,13342285 ,08978271
6 ,50000000 ,38720703 ,29052734 ,21197510 ,15087891
7 L612792097 ,60000000 ,39626367 ,30361938 ,22724915
8 ,70947366 ,60473633 ,50000000 ,40180969 ,31452942
9 ,78802490 ,69638062 ,598169031 ,80000000 ,40726471
10 .8§4913109 ,77275085 ,68547058 ,69273529 ,50000000
11 ,80494324 ,83384705 ,75965881 67619705 ,58809853
12 L92826843 ,88105774 ,82035828 , 74827766 ,66818810
13 ,95187378 ,91646576 ,86841202 ,80834484 ,13826647
14 .96821594 ,94234085 ,00537643 ,86686064 ,7975663566
15 979305327 ,96082306 ,93309975 ,89498020 ,84627188
16 .98669815 .97376060 ,95343018 ,92420519 ,88523853
17 99154973 ,98265517 ,06804267 .94612393 ,91568123
18 .90468899 ,98867208 ,97835737 ,96224065 ,93896094
19 ,99669462 ,99268335 ,98552037 ,97388051 ,96642072
20 .99796134 ,995632235 ,99042136 ,98215093 ,96928583
21 .99875304 ,99703769 ,99372952 ,98794023 ,97861302
22 .99924314 ,99814042 ,99593497 .99193760 , 98627532
23 ,99954388 ,99884215 99738866 ,89466308
24 ,99972695 ,99928454 ,99833656
25 ,99983754 ,99956104
26 ,99990391




Tabulka A/2

l - 11 12 13 14 15
[ 1 ,00048828 ,00024414 ,00012207 ,00006104 ,00003052
2 ,00317383 ,00170898 ,00091553 ,00048828 ,00025940
| 3 ,01123047 ,00646973 ,00369263 ,00209045 ,00117493
! ,02868652 ,01757813 ,01063538 ,00636292 ,00376892
. b ,05923462 ,03840637 ,02452087 ,01544189 ,00960541
| 6 ,10505676 ,07173157 ,04812622 ,03178406 .02069473
Lo 16615295 ,11894226 ,08353424 05765915 03917694
-8 ,24034119 17964172 .13158798 ,00462357 ,06690025
;9 .32380295 ,25172234 ,19165516 ,14313936 10501981
10 ,241190147 ,33181191 ,26173353 ,20243645 AE372313
11 ©,50000000 ,41590596 ,33881974 ,27062809 ,21217811
12 ,68409405 .50000000 ,41940987 ,34501808 ,27859855
13 ,66118026 ,68059013 ,50000000 142250949 13505540
14 ,72937191 ,65498102 ,57749051 ,50000000 42527701
15 ,78782189 ,72140146 ,64944598 ,57472299 ,50000000
16 ,83653021 ,77896583 ,71420591 ,64446445 ,57223222
17 ,87610572 ,82753577 ,77087084 70766764 ,63994993
18 ,90753333 ,86753455 ,81920269 ,763143517
19 ,93197703 ,89975578 ,85947924
20 ,05063142 ,92519361
| 21 ,06462223
_ o )
bo- 16 17 18 ; 19 20
I
1 ,00001526 ,00000763 ,00000381 ,00000191 ,00000095
2 ,00013733 ,00007248 ,00003815 ,00002003 ,00001049
3 ,00065613 ,00036430 ,00020123 ,00011063 .00006056
4 ,00221252 ,00128841 .00074482 ,00042772 00024414
| 5 ,00590897 ,00359869 ,00217175 ,00129974 ,00077194
6 ,01330185 ,00845027 ,00531101 ,00330538 ,00203866
7 ,02623940 ,01734483 ,01132792 ,007:31665 ,00467765
8 ,04656982 ,03195733 ,02164263 ,01447964 ,00957865
9 ,07579482 ,05387607 ,03775935 ;02611949 .01784907
10 ,11476147 ,08431877 ,08103906 ,04357928 ,03071417
11 ,16346979 ,12389428 ,09246667 ,06802297 ,04936857
12 ,22103417 ,17246422 ,13246545 ,10024421 ,07480639
13 ,28579409 ,22912916 ,18079730 ,14052076°
14 ,35553556 ,29233235 ,23656483
15 42776777 ,36005006
18 ,50000000
- J
- 21 22 23 24 | 25
:
1 ,00000048 ,00000024 ,00000012 - ,00000006 ,00000003
2 ,00000548 ,00000286 ,00000149 ,00000077 ,(0000040
3 ,00003302 ,00001794 ,00000972 ,00000525 ,00000283
4 ,00013858 ,00007826 ,00004399 ,00002462 ,00001372
5 ;00045526 ,00026676 ,00015537 ,00009000 ,00005186
6 ,00124696 ,00075636 ,00045612 ,00027306 ,00016246
7 .00296231 ,00185958 ,00115783 ,00071545 ,00043896
8 ,00627048 ,00406503 ,00261144 ,00166345
9 ,01205977 ,00806240 ,00533692
10 102138697 ,01472469
11 ,03537777 :
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Tabulka A|3

26 27 I 28 29 l 30
1 ,00000001 ,00000000 | ,00000000 ,0000000¢ | ,00000000
2 ,00000021 .00000011 -00000006 ,00000063 ‘ .00000001
3 ,00000152 ;00000081 ,00000043 ,00000023
4 .00000762 ,00000422 ,00000232 1
5 100002974 100001698 !
6 00009610 | i
l |
Tabulka B: Vybrané hodnoty @ (Y) (@ (=Y) =1— D (Y))
- —
y @ (Y) Y oY) | v o (Y) y @ ()
[ l
‘ !
0 0,5000 1.0 0,8413 t 2,0 0,9773 3,0 0,0987
0,1 0,5398 11 0,8643 | 21 0,9821 3,1 09990
0,2 0.5793 1.2 0,8849 | 2.2 0,9861 3,2 0,993
0.3 0,6179 1,3 0,9032 23 0,9393 3,3 | 0,9995
0,4 0,6554 i 09192 | 24 0,9918 34 | 09997
0.5 0,6915 1,6 09332 | 25 0,9938 3.5 0,9998
0.6 0,7558 1.6 0,9452 | 2,6 0,9953 3,6 0,9998
0,7 0,7580 1,7 09554 | 2,7 0,9965 3,7 0,9999
0.8 07881 1.8 09641 | 2.8 0,9974 3,8 0,0999
0,9 08159 1.9 0,9713 [ 2.9 | 9,9981 3,9 0,9999

Tabulka C: Vybrané kvantily normalni distribuéni funkce pro rozhodovdni o pfekrocent prahové

hodnotu

E Y s Y* s velkou presnosti ! y e Y* s velkou presnosti
| |
10,6 0,000 0,0000 0000 i 0,995 2,676 2,6758 2930
| 0,6 0,253 0,2533 4710 0,999 3,090 3,0902 3231
10,7 0,524 0,5244 0051 0,9995 3,291 3,2905 2673

0,75 | 0,674 0,6744 8975 0,9999 3,719 3,7190 1649
| 0,80 | 0,842 0,8416 2123 0,9999 5 3,891 3,8905 919
‘i 0,85 | 1,036 1,0364 3339 0,9999 9 4,265 4,2648 908
| 0,90 | 1,282 1,2815 5157 0,9999 95 4,417 4,4171 734

0,95 | 1,645 1,6448 5363 0,9999 99 4,753 4,7534 243

0,975 | 1,960 1,9599 6398 0,9999 995 4,892 4,8916 385
| 0,99 | 2,326 2,3263 4787 0,9999 999 5,199 5,1993 376
! i

Réadky odpovidaji hodnotém prvmho parametru (N,), sloupee cdpovidaji hodno-
tém druhého parametru (N_ resp. N — N,).
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N¢>35 a N — N;> 5, chceme-li zjistit aproximativni konfidenéni interval 8
pro p¢).

Konfidenéni intervaly pro mensi &etnosti nutno hledat pomoci tabulek tzv.
nedplné beta funkce (¢i odvozené pomoci distribuéni funkee binomického rozlozZeni).
Tento obtizny postup zde neuvidime.

4. Piiklad postupu rozhodovani o hypotézich majoritni pravdépodehnosti
a asymetrie a odhadu parametri

Tlustrace postupu testovani riznych hypotéz v této ¢dsti ma slouzit jako voditko
pro uzivatele. Priklad je vzat z malé skupiny (dilny) o 25 respondentech. Nazory na
vliv zavadéni automatizace byly zjistovany mj. otdzkami:

»Jak podle Vaseho ndzoru ovliviiuje automatizace

a) pracovni spokojenost (zvySuje, nema vliv, snizuje)?

b) moznosti pro mladé délniky (zvySuje, nemé vliv, sniZuje)?*

Pri rozhodovani o hypotéziach budeme postupovat podle krokt popsanych v pied-
chézejici ¢dsti. Budou nds zajimat hypotézy o existenci majoritni (nadpolovitni)
pravdépodobnosti, tj. ndzoru zastivaného vice nez padesiti procenty osob, a déle
hypotéza o asvmetrii, tj. pfevaha nizoru na ,,zvySovani* oproti ,,sniZovani’‘ nebo
naopak.

Postup ukiazZeme soubéiné pro oba uvedené dotazy:

Krok 1:
Prahovou hodnotu pro piijeti rozhodnuti y polozime rovnu y = 0.999.
Krok 2:

V pilotdZnim Setfeni bylo dotazovano nékolik mélo nahodile vybranych délnika.
Vysledky nemaji Zddnou analytickou cenu, ale muzeme je pouZit jako zaklad pro
uréeni parametru apriorniho rozlozeni. Byla v8ak poloZena pouze otdzka o vlivu
automatizace na pracovni spokojenost (otdzka a)). Z péti rozhovori byli tfi odpovédi
v kategorii ,,-+‘ a dvé v kategorii ,,0°. Dosadime proto m4 = 3, mg = 2; vzhledem
k tomu, Ze kategorie,,—‘‘ nebyla obsazena, dosadime automaticky m_ = 1.

Druhé otdzka (b) o vlivu automatizace na ,,moznosti pro mladé délniky‘’ nebyla
v pilotéZi poloZena. Nemdme zformulovén ani Zadny ndzor o odpovédich respondenti.
Proto pouZijeme Bayestv postuldt ,,0 stejnomérné neznalosti®, tj. ptifadime apriori
viem trojicim parametrut stejné vahy; toho docilime tak, Ze poloiime my = my =
=m_=1.

Krok 3:

Ziskani a sumarizace empirickych dat — Fizeny rozhovor a t¥idéni dat.

Krok 4:

Vypotet aposteriornich parametra je patrny z tabulek 1 a 2. V piipadech nékterych
hypotéz je hned na prvni pohled vidét, Ze nemé vyznam testovini provadét. Uvddime
je zde jen pro ilustraci postupu.

V tabulce A vyhledime apostriorni pravdépodobnosti pro jednotlivé hypotézy.
Sumarizace je ddna v tabulce 3.

8) Konfidenénf interval 100(1 — «) % m4 tvar  nalezneme napf. v tabulee C v praci Rehdak, Re-
Pt £ 2af2 Oy; hodnoty koeficientu zq/2 (coz je horni  kovéa [1978]).
«{2 kvantil standardnfho normélntho rozlozenf) '
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Tabulka 1: Ndzory na ovlivnéni pracorni spokojenosti

- . Zhorsuje ZﬁSt.é'Vé 7Zvysuje
Kategorie stejnd 1 Soudet
I
Apriorni parametry [m;/ 1 2 3 6
Cetnosti /ny/ 5 8 12 26
Aposteriorni parametry [N/ 6 10 15 31
Tabulka 2: Ndzory na ovlivnéni mofnosti pro mladé délntky
Zhorsuje ZﬁSt.éVé' Zvysuje
Kategorie Je stejné v Soudet
Apriorni parametry [m;/ 1 1 1 3
Cetnosti [nyf ’ 3 1 20 24
Aposteriorni parametry /N;/ 4 2 2] 27

K dané hypotéze (1. sloupec) nejprve uréime dvojici parametri pro vyhledavani
aposteriorni pravdépodobnosti (v tab. 3"je ve druhém sloupci uvedena obecns
symbolicky, ve tfetim sloupeci pak jsou dény konkrétni hodnoty parametri odvozené
z tabulek 1 a 2). Prvni parametr vystupuje jako ¢islo fadku tabulky A (¢tvrty sloupec)
druhy parametr jako &islo sloupce tabulky A (viz paty sloupec v tab. 3). V poslednim
sloupci je uvedena aposteriorni posloupnost, na jejimz zakladé rozhodujeme o ptislus-
né hypotéze; najdeme ji v tabulce A v daném fadku a sloupei.

Na vybranych piipadech z tabulky 3 ukdZeme oba zptsoby aproximace aposterior-
nich pravdépodobnosti normélnim rozloZenim uvedené v lemé 3 v ¢édsti 5. V tabulce
4 a 5 je @ = P(H). Aposteriorni parametry znacime N a No.

A) Aproximace Gram-Charlierovim rozvojem

Tabulka 4 ukazuje t¥i kroky postupu aproximace: a) uréeni parametr (sloupec 1),
b) vypotet hodnoty Y (sloupec 2), ¢) nalezeni hodnoty standardni normdlni distri-
buéni funkce, 9 kterd aproximuje hledanou pravdépodobnost P. Ve étvrtém sloupet
uvidime rozdil mezi aproximovanou hodnotou a piesnou hodnotou ziskanou z tabul-
ky A.

%) Hodnoty funkce @ byly ziskdny z tabulek
Janko [1958]. Proto byl vyraz ve druhémn sloupei

formace je pro nas specialni pripad (p = 1/2) to-
toZnd s puvodni Laplaceovou transformaci, umoz-

vypoitten na dvé desetinnd mista (tedy znaéné ne-
presnd). Nebyla provédéna interpolace v tabulkéch.
Existuji ovéem tabulky daleko pfesnéjsi, zde jsme
viak volili b&2ny a rutinni postup s nejsnize dostup-
nymi tabulkami u néds. Gram-Charlierova trans-

fuje viak pfesndjdf odhad maximalni absolutn{
chyby. Piesnost je oproti udaji v lemé 3 jesté ddle
zvysena, nebot pro p = 1/2 je binomické rozloZenf
symetrické a k normélnfmu se bliZ{ velmi rychle.
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Tabulka 3: Uréeni aposteriornich pravdépodobnostt vybranych hypotéz pro data tabulky 1 a tabulky 2

+» V1iv automatizace na pracovni spokojenost‘‘
Parametry Hodnoty . \ Aposteriorni
Hypotéza aposteriornich para- Rédek | Sloupec pravds-
.o . |tabulkyA |tabulkyA
rozloZenf metri podobnost
p+> } (N4, N — Ny) (15,16) 15 16 .4278
2o > % (No, N — Ny) (10,21) 10 21 .0214
p-> 3 (N.,, N - N.) (6,25) 6 25 .0002
pe> po (N4, NJ) (15,6) 15 6 0793
»»V1iv automatizace na moznosti pro mladé dslniky*¢
|
P+> % (Nyy N — N3) (21,6) 21 6 .999
pro> % (Ng, N — Nyg) {2,25) 2 25 .0000004
p-> 3% (N_, N — N.) (4,23) 4 23 .000044
Py > P (Nay N-) (21,4) 21 4 | .99986

B) Aproximace Camp-Paulsonova

V tabulce 5 ilustrujeme nejpfesnéjsi praktickou aproximaci binomického rozloZeni
normélnim. Postup je analogicky tabulce 4; vypocet hodnoty Y vSak je proveden
ve tiech krocich (sloupce 2—4).
Tato transformace je presnéjsi pravé u extrémnich pravdépodobnosti.
Kdybychom chtéli v naem piipadé aplikovat (ekvivalentné) tabulku C (nejsou-li
napf. po ruce podrobnéjsi tabulky funkce @), pak pro na§ piipad postupujeme
jednoduse:

a,) proy = 0.999 je Y*o,ggg = 3.090
b) pro 1 — y = 0.001 je Y*j 001 = — Y*p.900 = — 3.090

Proto plati, ze P (=) = .999, pravé kdyz Y = 3.090 a P < .001, pravé kdyz
Y = —3.090.

Pro data v tabulce 5 je ¥ = X (3Z)-1, a tudiZ méme evidenci pro pfijeti hypotézy
p- < } pro ,,spokojenost a hypotézy po < §, p- < § pro ,.moZnosti pro mladé
délniky.

Pomoci aproximace tabulky 4 dochdzime ke stejnému vysledku. V obou pfipadech
se vysledky lisi od pfesnych hodnot. V tabulce 3 pfijimdme pro znak ,,moznosti pro
mladé délniky‘‘ i hypotézu p, > {.Tato ztrdta informace je tedy zpisobena numeric-
ky (1), pouzitim aproximainich formuli.
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Implikace jsou dvé:

— nepouzivejme nikdy aproximaci tam, kde mame k dispozici jednoduchou a ptimou

metodu 10);

Tabulka 4: Postup vipodtu aproximace Gram-Charlicrovym rozvojem (viz lema 3)

e iy S i @ Absolutni chyba*)
(15,16) — 0,18 0,42858 0,00081
(10,21) — 2,01 0,02222 0,00083
(6,25) — 3,47 0,0002602 0,0000977
(21,6) 2,94 0,998359 0,000394
(2,26) — 4,51 0,000003241 0,000002841
(4,23) — 3,73 0,00009574 0,00005175
*) absoluini chyba = | pFesnd hodnota — aprowimovand hodnota |
Tabulka 5: Postup Camp-Paulsonovy transformace (viz lema 3)
Parametry o ‘ 7 Absolutni
(N1 N — N1) & é X (3] 2)1 ® chyba*)
| Y
| i
(15,16) —0,1943 ' 01264 | — 0,182 0,42858 0,00081
J
(10,21) — 2,0024 0,1086 | — 2,025 0,02118 0,000207
o i -
(6,25) — 3,4706 0,0688 ! — 4,410 0,000005169 0,000157
_‘ |
(21,6) 4,7590 ‘3 0,2764 | 3.017 | 0,998736 0,000017
! |
(2,25) —5,2075 | 0,1328 ; — 4,845 0,0000006173 |  0,00000022
. | —S. k.
(4,23) — 40724 | 0,1214 ! — 3,896 0,00004810 0,00000411
| i
*) absolutni chyba = | presnd hodnota — aproximovand hodnota |

10) To plati pro celou statistiku. Znamy priklad
je pouziti chi-kvadratu misto piesného Fischerova
testu u malo obsazenych kontingenénich tabulek
2 x 2 nebo pouziti normélniho z-testu misto Stu-

dentova v-testu v pripadé testovini hodnoty pri-
méru normélniho rozloZeni pii malém podtu pozo-

rovani.




Tabulka 6: Postup odhadu pravdépodobnosti p+, Po, P- pro tdaje z tabulek 1 a 2 (,,Spokojenost'*

a ,,Moinost: pro mladé*)

» Vliv gutomatizace na pracovni spokojenost‘’

| oanotepunociun | camap| g ambintnt | st moral
P+ 13 .484 .088 (.312,.656)

Po 10 .323 .082 (.162,.484)

- 6 .194 .070 (.057,.331)

» V1iv automatizace na moznosti pro pladé délniky*

Dy 21 .778 .079 (.623,.933)

Po 2 .074 .049 (nelze pouzit)

p- 4 .148 .067 (nelze poutzit)

— je vyhodnéjsi pracovat s hodnotou P; i kdyZ Y nepiekro¢i odpovidajici hranici.
P mize byt tak blizko ke zvolenému y, Ze hypotézu stejné pfijmeme, piestoze P < v.

Krok 5:
Rozhodnuti pro y = 0.999; pfijimame tyto vyroky o parametrech:

a) znak ,,spokojenost: Hj - ip. <

b) znak ,.moZnosti pro mladé®: H1 Py > %
[iz tpo < %
Hy:p- <4}
Hy:py>op.

V tomto pfipadé viak jsou vyroky He, H3 a H,4 disledkem vyroku H;. MiZeme tedy
tici, Ze nazor o zhorSeni spokojenosti nedosihne 50 9,, zatimco nazor o zvyseni
mo#nosti pro mladé délniky je majoritni (pfesahuje 50 %,).

Kdybychom na prijeti hypotézy nebyli tak pfisni, mohli bychom pfijmout
i hypotézu asymetrie v piipadé znaku spokojenosti tj. nazor na zlepSeni pievazuje
nad nazorem na zhorfeni.

Odhad parametru providime jednoduchym dosazenim do vzorct (10) a
postup je naznaden v tabulce 6.

(12);

5. Statisticky model a teoretické ziklady metody

Tato ¢ast je vénovéna pfedev8im matematicky se orientujicimu étenafi: Znak § ma
tfi parametry, které zde budeme znadit p1, p2, p3 (8 korespondenci py = p-, p2 = po
ps = p4). Predpokliddme, Ze data vznikaji jako n- ndsobné nezdvislé realizace
ndhodného pokusu (z je déno) a Ze hodnoty téchto realizaci, S;, Ss,..., S; mohou

11) Ptiblizny interval spo&itdme jako: odhad p; -+ 1,96 x smérodatnd odchylka odhadu.
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byt sumarizovany pomoci vyslednych absolutnich ¢etnosti n; (= pocet pozorovéni
v kategorii), n; + ngz + ng = n. Za tohoto predpokladu mé trojice (n1, ng, n3)
mullinomické rozlofeni pravdépodobnosti.

n! "
(14) P (ny, no, n3/p1, p2. p3) = ————pi' Py Py’
n1! na! na!

Pro bayesovskou inferenci a parametrech p; volime konjugované (piirozené sdruzené)

apriorni rozloZeni, které dévi dostateéné Sirokou tiidu dvourozmérnych Dirichleto-
vych rozloZeni reprezentujici pro praktické ulohy dostateéné siroké spektrum tvari.

Lema 1. Budi? rozloZeni trojice (n1, n2, g} multinomické, dané vzorcem (14). Apriorni
rozlozeni nahodnych veli¢in (p1, p2, p3) necht je dvourozmérné Dirichletovo rozloZeni
s hustotou

r (m1 + ma 4 m3) my-1  mrp-1  mg-t

P, 3
I (my) 1" (mg) I' (m3) Pt

na simplexu @ (viz (1)), fp = 0 mimo @. Pfitom I'(z) je gamma funkce a m; jsou
realné kladné parametry. Aposteriorni rozloZeni nahodnych veliéin (p;, p2, p3) je opét
Dirichletovo s parametry Ny, No, N3, kde Ny= n; + my (pro i = 1, 2, 3), tedy

I'(Ny 4 N2 + N3) it pNet N1
I'(N)T'(Na) I'(N3) ' : :

Zikladni vlastnosti Dirichletova rozloZeni popisuje S. S. Wilks [Wilks 1962]. Ocek4-
vané hodnoty, variace a covariance jsou dany formulemi (10)—(13), které je mozno
pouiit pro ulohu aposteriorntho odhadu parametri.

Pro testovani majoritni pravdépodobnosti H; : p1 > § pouZijeme lemu 2.
Lema 2 (znaménkovy test pro hypotézu existence majoritni pravdépodobnosti). Za pied-
pokladii lemy 1 a vztahu (14) plati pro aposteriorni pravdépodobnosti

(15) Jp (p1, pe, pafmy, me, mg) =

(16)  fp(p1. p2. p3/N1, N2, N3) =

N Na
(17) P (py < }[Ny, N2, N3) = ($H)¥1 21‘3 (s )
P
Nl—ll N-1
(18) P (p1 > 3Ny, No, N3) = (H)N-! _20( i)
1=
— Pp(X <Ny}, N—1).
N,
(19) = F oy, on(wo2)

kde Pg je distribuéni funkce binomického rozloZeni s parametry 4 a N — 1 a Fy  (2)
je distribuéni funkce Fisher-Snedecorova F — rozloZeni s (g, k) stupni volnosti.

Pravdépedobnosti jsou ddny v tabulce A pro N =< 32. Mimo rozsah tabulky muze-
me bud pouzit specidlnich tabulek binomického resp. F — rozlozeni, nebo nékterou
z mnoha moznych normalnich aproximaci, z nichz zdikladni a nejprakti¢téjsi uvidime
v lemé 3.

Lema 3. Binomickou pravdépodobnost (18) miiZeme aproximovat nékterou z nasle-
dujicich metod (znatime @ (z) kumulativni distribuéni funkei normalniho standard-
niho rozloZeni N (0,1)):
4. Gram-Charlieriv rozvoj s korekcemi pro spojitost
(20) P (H1/Ny, N — N1) =D (Y1),
2N — N
kde ¥ = —__1:
N—1
absolutni chyba < 0,112 (N — 1)~}
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B. Camp-Paulsonova aproximace

21) P (H1Ny, N — Ni) = & (X 3VZ)-1),

N 1 1
kde X = (9 — L ——L—Y—9+—u——
N1 N—Nl N-——Nl

41 M )§+ 1
N, \N — N N — N,

absolutni chyba < 0,014 (¥ — 1)‘5'

Odkazy na jednotlivé metody 2de neuvddime a odkazujeme &tendte na piehlednou
praci [Johnson, Kotz 1969].

Cdmp Paulsonova transformace je piesnéjdi nez Gram-Charlierova, je 1 presnéjsi
nez dalsi béZné a znamé transformace, napiiklad transformace arcsinova ¢&i Freeman-
-Tukeyho zlepseni arcsinové transformace.

Camp-Paulsonova transformace je zddnlivé komplikovand, avSak za pomoci mo-
dernich kalkulac¢ek je vypocet velice rychly. Pro praxi tuto metodu doporudéujeme,
i kdyz pro velké soubory je metoda Gram-Charlierova postacujici.

Po vypoétu hodnoty Y (resp. X (3VZ)-1) jako argumentu funkce, nalezneme
hodnotu funkce @ v tabulkich norméalni distribuéni funkce s primérem 0 a rozptylem
1. Tyto tabulky jsou v téméf kazdé udebnici statistiky a ve statistickych tabulkach
(nap¥. Janko [1958]). Zékladni hodnoty funkee viz tabulka B.

Véta (znaménkovy test pro hypotézu asymetrie) Za piedpokladit a znateni lemy 1

a vztahu (14) s empirickymi ¢etnostmi »ny, ns, %3 plati pro aposteriorni pravdépodoh-
nosti

22 P > psie Mo = 5

Nazl (Ng — 144\ /1 \¥+J
s (_ —
j=0\ Ns—1 2

23) = Pup(X <N —1/3, Ng— 1) =
24) =Pp(X = Nagjp=14 M —1)=

M1 07— 1
25) = (HU-1 2 ,
e =g 3 ()
kde M = N; + N3
P, p = distributni funkee negativné binomického rozloZeni
Pp = distribuc¢ni funkce binomického rozlozeni.

Dukaz:
K dakazu véty pouZijeme zdkladnich vlastnosti Dirichletovy hustoty, neupiné beta
funkce a negativniho binomického rozloZeni.

Za platnosti predpokladi je apriorni hustota rozloZeni trojice nahodnych veli¢in

P1, P2, ps dvourozmérné Dirichletovo rozlozeni s parametry N1, No, N3 dané vztahem
(8), (V¢ = m; + ny).
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Pak
(84) P =P (p1 > p3/N1, Nz, N3)

- [/f o M7t peNe=l paNe—1 dpy dps dps
JJJ (N T'(Ne) ' (Ny)

PL>Pa
m>1-pg

Postup je zaloZen na integraci vyrazu (34) s vyuZitim zakladnich vztahti pro neiipl-
nou beta funkci

7 12 1—py
"(N) T Nyl / N,—1 No—1
P= Py nt (1 —p1— p3)"* " "dp1dps
I (N1) I' (N3) I" (N3) / R
0 Pa
1—-p;
Oznadime p‘}l‘_l (1 —py — pa)Me—1 dpy = Iy, My—1
s

Integraci per partes a postupnym dosazenim dostaneme

1 N, —1
. . — . maNi—1 — 9 Ny o~~~
In —1, Ny v, p3a (1 p3)™e - o
— 2 [Nl - ]]k 7)3N1~l—/: (l _ 2])3)N2+k
(Ne+ & — 1k

kde [Mlg = M (M — 1)...(M — k + 1)
[M)o=1

Pouzitim vysledkul?2)

L
B

f])3N1+N3—2—Ic (1 — 2p3) Netk  dps = (per partes)
0

In,—2, N, =

= (})M+Na=1-k Be(N; + N3 —1—k No 41+ k) =
(N1 -+ N3 —2 — k) (Ng + k)t /1 \NatNa—1-k

N (N —1! ("2_)

dostaneme dalel®

é 1

j p3¥e— 1IN 1, Np-1 dpz = 2

o RS

[N1— 1]

N +Ng—k—2 e O AN2tE T
. Pp3get 3 .(1 .4)3) dpa—-
No + ke
y (N2 T2

[N2 -+ kl+1 (N —1)!
__N‘Z’I (Ni+ N3 —2— K1 (Ng — DI [N — 1] /1 \Mr#Na—1=2
T k<o (N—1)! ( )

9

. (Mi—1k (Ni+DNg—2—-K! N+ k! ( 1 )N‘+N°_l"k

-

2

&~

12) Be je znaden{ pro beta funkei. 13) Nésledujici sumy jsou provedeny od k =0
dok=N;— 1.
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Pravdépodobnost P vznikne nasobenim tohoto vysledku konstantou vyrazu (26)

P _inl (N + N3 —2— k) ! 1 \NitlNo—1-k
NS = 1=k Na—1) \ 2

SN Na—2— L) 1 \NitNy—1—k
k=0 N3 —1

2

NM-1N I — 1 1 \Nat+t
AP
t=0 ¢ 2

Pravdépodobnost Py je distribuéni funkce negativné binomického rozloZeni s para-
metry p = % a N3. Je to tedy pravdépodobnost, Ze pii ndhodném opakovani jevu
s pravdépodobnosti p = % potfebujeme nejvyge N; 4+ N3 — 1 pokusti, abychom
dosahli Ng tspéchi.

Vztahy (24) a (25) plynou z pravdépodobnostnich identit vztahujicich negativné
binomické a binomické rozloZeni.

Poznamky k aplikaci véty 1 i}

1. Aposteriorni pravdépodobnost H; je pro parametry Ny, No, N3 stejnd jako
pravdépodobnost H; pro parametry Ni, 0, Na. Pro rozhodnuti o hypotéze I1y
pouzivame stejny postup jako pro Hj, pouze redukujeme N o hodnotu N, tj.
0 ,,pocet’‘ odpovédi v neutrdlni kategorii.

2. Plati zde vSechny poznimky u lemy 2 pro situaci, v niz N zaménime hodnotou
M = N; + N3. Té% aproximace z lemy 3 provdadime zcela obdobné.

3. Aposteriorni pravdépodobnost Hs miizeme obdobné vyjddrit téz distribuci
Fisher-Snedecorovou.

4. Je zfejmé, Ze vysledek lze pouiit symetricky pro lihovolnou z hypotéz Hy — H,,
a to tak, Ze prosté zaménime indexy u prisluSnych parametra.

5. Kromé uvedenych transformaci binomického rozloZeni lze také pouzit transfor-
maci inverzniho hyperbolického sinu navrZzenou Anscombem [1948].

Zaveéry

Znaménkovy test, ktery byl ve stati odvozen na zdkladé bayesovského principu
statistické inference, umoznuje tedy neparametrické vyhodnocovani jednorozmérnych
distribuef diskrétniho znaménkového znaku. Umoinuje testoval hypotézy asymetrie
1 existenci majoritni pravdépodobnosti. V piipadé potieby muZe byt zobecnén na
obecné hypotézy tvaru p; > ¢, resp. na hypotézy 0 < py <a, a <py <b, b <
< p+ < 1, kde a, b jsou pfedem zvolené konstanty. Pouziti takovychto hypotéz
je vBak relativné malo ¢asté, a proto plislusné testy neuvadime.

Postupy popsané v této stati je oviem mozno pouZit i pro libovolné nomindlni
znaky: jsou-li py, po,.... pr pravdépodobnosti pro 1, 2, .. .. k-tou kategorii nomi-
nalniho znaku a cheeme-li zjistit, zda plati hypotéza p; > I pro nékteré ¢ nebo hypo-
téza p; > p; pro nékterou dvojici kategorii, aplikujeme uvedeny postup pro Ny,
N — Ny, resp. pro Ny, Nj; tyto parametry vznikaji obhdobné jako u znaménkovych
dat: N; = m; + ny, my charakterizuji apriorni ndzor na pravdépodobnosti ohsazeni
poli a n; jsou empirické cetnosti.

Stejné tak lze aplikovat i postup pro odhad parametrit p; a jeho smérodatnych
chyb. Metodu lze pouZit na porovniviani piislusnych kategorii roz8iteného znamén-
kového znaku jako alternativu pro rozklad chi-kvadratového kritéria symetrie rozlo-
Yeni, viz [Rehik, Rehdkovd 1978].
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Vhodnost metody a jeji piednosti i nedostatky ve srovndni s jinymi postupy mohou
byt provéfeny pouze daldi praktickou zkuSenosti a kritickym metodologickym
zhodnocenim pouZivani. Pro velké soubory dat budou vysledky klasického i bayesov-
ského testovani vétsinou shodné. Rozdily se projevi piedevéim u malych datovych
soubori. A praveé zde se muze metoda vhodné dopliiovat s postupy klasické statistiky.
Je to v8ak metoda obtiZznd pravé tim, Ze pii formulovini apriornich vah vyzaduje
hluboké uvazovani zcela nerutinniho charakteru, cheeme-li ji vyuiit v celé jeji sile.
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Pesrome

Pxxerak fl.—P:kerakoBa B.: Kpurepnit 3naxkos no Baiiecy

B crarbe BRIBOZITCA HOX0 K OLUEHKe AaHHKX 3HAKOBOTO TitMa Iio Baitecy, AnocrepuopHoe
pacmpegesienile oCHOBaHO Ha (YHKUNI TPaBEOHOAOOHS MOMeJHN MYJbTHHOMITYECKOTO pac-
Upefesents M alpuopHoro pacopepedenus Jnpnxnes. 3ro pacipegenenne Juist Do, Po, P-
ABJIHETCH OCHOBOI A CTATHCTIMMECKUX BHBOLOR 00 HTux mapamerpax. J[HCKperHas 3HAKO-
Bas NepeneHHasa ABJAAETCA TPIXOTOMIEI ¢ TOTOKATENLIOI, HellTpaJb ol It OTPHLATENABHOH
KaTeropueii; BeposATHOCTb GCYLIECTBIEHIA B 9TIX KaTeropisax 0G03Ea4aeTCs COOTBEeTCTBEHHO
P4y Po, P-. B cTaThe omicamsl METOON HPOBEPKII FUNOTe3 0 CYMECTBOBaHI mpeobiagaromei
BEPOATHOCTH (HAOp., P. > 4) W acuMerpi (p; > p-). Ouncana I poib OlleHKH.

B mepsoit uacTir crateir mpnBoxuTcs obuias mpes moaxoxa bBailieca, KoTopas 3atem 00-
CYMIaeTcs B CBA3I C JlaHHOI npobiemoil. B creaywomei vactn 06BACHEHO 3HAYEHIIe anl pHOP-
HOro pacupeae’ieHIis N ero napasmerpo. IIpoBepka rumoTes JiIsi BHINCIIPIIBEEHHBIX 3a/1a4
OIMMCHIBAeTCA MO IaraM Tak, Kak oHa NPOBOAHTCA Ha HpaKTHKe. B 9Toif wacTi nmpuseicHa
TaGaAMIA aIocTepHopHKX BepoaTHocTedl (tabamua A) n rabauma maGpaumbiX 3HaYeHWIl
KYMVIATIBHOH (VHRLIN pacipefeNeBA CTAaHZAPTHOTO HOPMAJBHOIO pacHpefeeH s
(ra6imna B)., gasee Baskueiiuine KBaHTHJK 3TOro pacnpegeiennsa (tabaumpma C). B aeme 3
IpHBeHeHsl Ba CHoCo0a HOPMAJALHOH aNpOKCIMAONA aOOCTePHOPHHIX BePOSTHOCTell; ampo-
kcamannst Kaymm-TTayabcona pekomeHAYeTcsA Kak ropasgo Gojee Tounas.

Pasnsie cnocofbl BCIOAL3OBAHIA METONA HIJNICTPHPYIOTCS HA HYMEPIYeCKOM IIPIMepe,
KOTOPHHT RoMKeH o0aer1nTh Noab30Banie MeTofnom. MaTemarngeckas GopyMyIHpoBKA METOXA
OCHOBaHa Ha CBOJIKE T NIPIMEHEeHIIH N3BeCTHHIX CBO#CTB B Jemax 1—3 # B Teopeme, KoTopas
JaeT OCHOBHOIl pe3yabTaT Aast MPOBePKN acCHMeTPHNA (IPHABeHEHO W ee COKpameHHOe I0-
Ka3aTeJabeTBO).

Metox xputepns 3HakoB mo Baliecy aBinserca anbTepHaTABON KIACCHIECKOro KpHTepus
3HAKOB M AIPVTIIX METOROB aHaJNM3a 3HAKOBBIX NAHHLIX, CBOJKA KOTOPHIX COOEPIKATCA B pa-
Gote P;xerak, Prxkeraxosa (1978).
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Summary

Rehdk J. — Rehiakovi B.: A Bayesian Sign Test
In the paper, a Bayesian approach to the discrete sign data is developped. Using
the two-dimensional Dirichlet prior distribution with parameters m4, my m-~ and
the multinominal model for data behaviour, the posterior distribution of p+, pg, P-
is utilized for inference about these unknown quantities. Having denoted pro-
babilities of occurrence in positive, neutral and negative categoriy of the tricho-
tomy representing discrete sign variable as pi, p;, p-, the testing hypotheses
P+ > % , Do > 1» , - > ﬁ and ccmparisons like py > p- are treailed. The
estimation problem is handled as well.

The first part introduces the general idea of Bayesian inference: next, the prior
distribution and possible meaning of its parameters is shown for the problem. The
testing for asymmetry (eg. p+ > p-) and for the existence of majority probability

(eg. p+ > }) is exposed in steps for practical use. In this part the table of
aposterior probabilities as function of two aposterior parameters (Table A) and
selected values of standard normal cumulative distribution function and its selected
quantiles (Tables B and C) are presented.

In lemma 3, the normal approximations of posterior probabilities are reviewed and
the Camp-Paulson method recommended. The method is illustrated by a numerical
example giving a guide to user.

Mathematical formulation consists in a summary and applications of well known
statistical properties in lemmmas 1 to 3 and in theorem which gives the results
necessary for testing asymmetry (the abridged proof is presented).

The method is an alternative to the classical sign test and various other methods
for analysis of sign data which were reviewed in Rehdk, Rehakova [1978].
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