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Úvod

Analýza sociálních sítí (dále SNA, z anglického social network analysis) je svébyt­
ným přístupem ke studiu (nejen) sociálního světa. SNA spočívá na předpokladu, 
že sociální svět je utvářen primárně relačně prostřednictvím celé řady rozmanitých 
vztahů mezi různými entitami včetně sociálních aktérů. Ústředním konceptem 
SNA je graf, tedy matematická reprezentace sítě, zahrnující alespoň jednu množi­
nu uzlů (typicky sociálních aktérů) a alespoň jednu množinu vazeb mezi nimi (na­
příklad spolupráce) (Brandes et al., 2013; Wasserman a Faust, 1994)1. Díky tomu, 
že je definice sítě značně abstraktní a široká, lze SNA aplikovat napříč sociálně­
vědními oblastmi. Za pomoci SNA tedy můžeme studovat kupříkladu vztahy 
v pracovních kolektivech či školních třídách, interakce zájmových skupin, vztahy 
států v mezinárodním prostředí nebo chování jednotlivců na online platformách. 
V posledních dekádách tak můžeme sledovat rapidní rozvoj výzkumu sítí v so­
ciologii, politologii, pedagogice či kriminologii (Robins, 2015; Scott a Carrington, 
2011). Právě explicitní popis a modelování vztahů mezi sociálními aktéry SNA od­
lišuje od klasického statistického přístupu v sociálních vědách, který se soustřeďu­
je na individuální aktéry a jejich vlastnosti popsané prostřednictvím proměnných.

V rámci deskriptivní SNA existuje celá řada metrik a algoritmů umožňují­
cích zevrubný popis dané sítě: pomocí měr koheze lze charakterizovat síť jako ce­
lek, díky algoritmům pro detekci komunit lze zase v síti nalézt podskupiny úzce 
propojených uzlů či prostřednictvím měr centrality identifikovat klíčové aktéry. 
Podobně jako v klasické statistice jsou tyto deskriptivní nástroje velice užitečné 
a umožňují zodpovězení pestré škály výzkumných otázek. K zodpovězení kom­
plexnějších výzkumných otázek je však, opět podobně jako v klasické statistické 
analýze, třeba použít metody statistické inference a statistického modelování.

Etablovaný aparát statistického modelování však nelze prostě jen vzít 
a aplikovat jej při analýze libovolných síťových dat. Jsou pro to dva hlavní důvo­
dy. Prvním a patrně tím nejzásadnějším je narušení předpokladu nezávislosti po­
zorování, což je základní předpoklad klasické statistické inference a modelování. 
Tento předpoklad je však v síťových datech nutně narušen, neboť taková data 
jsou postavená na interdependenci pozorování prostřednictvím různých kom­
plexních vzorců vzájemné (ne)propojenosti. Druhým důvodem pak je, že zatím­
co klasická inference pracuje s výběrem z určité populace a na tuto populaci se 
snaží své závěry zobecňovat, inference ve výzkumu sítí je zpravidla orientovaná 
na model (Snijders, 2011). Analyzovaná síť je totiž zpravidla úplným souhrnem 
uzlů a vazeb mezi nimi, a tedy populací, přičemž inference míří na identifikaci 
systematického působení určitých mechanismů postulovaných v rámci modelu, 
který má vysvětlovat, jak daná síť vznikla. 

V rámci SNA tak byly vyvinuty a  jsou rozvíjeny statistické modely, které 
různou měrou tato dvě specifika zohledňují. Exponenciální modely náhodných 

1  Pojmy graf a síť proto můžeme chápat synonymicky. 
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grafů (dále ERGM, exponential random graph model) tvoří patrně nejčastěji užíva­
nou a nejvíce rozvinutou rodinu modelů, které explicitně modelují interdepen­
denci v  síťových datech a  umožňují tak systematické testování vlivu různých 
relačních mechanismů na strukturu pozorované sítě. Jinak řečeno, ERGM umož­
ňují určit, které mechanismy pozorovanou síť utvářely. Jsou to právě ERGM, jimž 
se věnuje předložená studie. Naším cílem je zde zevrubně představit tyto modely 
v prostředí českých a slovenských sociálních věd od jejich statistických základů 
a  teoretického ukotvení až po praktické otázky jejich aplikace a  implementace 
v dostupném softwaru. Možnosti a omezení ERGM zde demonstrujeme v aplika­
ci na konkrétní případ sítě 68 organizací (politické strany, energetické společnosti 
nebo environmentální hnutí) podílejících se na politickém procesu regulujícím 
uhelný sektor v České republice. O této síti pak přinášíme původní poznatky na 
základě výsledků z našich modelů.

Síť organizací v uhelném sektoru České republiky – kontext a data

Modelovým případem, na němž budeme ilustrovat aplikaci ERGM je síť organi­
zací podílejících se na tvorbě uhelných politik. ERGM tedy využíváme v kontextu 
studia politických sítí (Victor et al., 2018), jehož cílem je zachytit, jak různé typy 
státních a nestátních aktérů interagují za účelem ovlivnění podoby konkrétních 
politik. Protože jednotliví aktéři zpravidla nemohou dosáhnout svých cílů sami, 
musejí vstupovat do vztahů koordinace, spolupráce nebo směny zdrojů. 

Studovaným případem je uhelný sektor České republiky. Česká republika, 
evropsky významný producent hnědého uhlí, je jednou z nejvíce průmyslových 
zemí a  patří rovněž mezi největší emitenty CO2 na obyvatele v  Evropské unii 
(Ocelík et al., 2019). Klíčovou otázkou současnosti přitom je, za jakých podmínek 
a kdy k odchodu od uhlí dojde. Aby dosáhli svých partikulárních cílů, vstupují 
angažovaní aktéři do interakcí, jejichž prostřednictvím si vyměňují zdroje, včet­
ně expertních informací, a koordinují své jednání. Suma těchto lokalizovaných 
interakcí pak utváří celkovou (globální) strukturu sítí – v našem případě výměny 
expertních informací, spolupráce a vnímaného vlivu. Expertní informace, defi­
nované jako informace vědeckého, technického či procesního charakteru, před­
stavují specifický typ zdroje, který má v rámci politického procesu významnou 
úlohu. Umožňují totiž aktérům s  rozhodovacími pravomocemi daný problém 
lépe diagnostikovat a posoudit jeho dostupná řešení. Tento předpoklad je dále 
umocněn v případě komplexních politických problémů, jako jsou právě trans­
formace energetiky a uhelný útlum, spojených s vysokou mírou nejistoty. Vzorce 
výměny expertních informací jsou rovněž zásadní z hlediska schopnosti politic­
kých aktérů a jejich koalic změnu daných politik prosadit či této změně zabránit. 
Důležité přitom je, zda je výměna expertizy podmíněna ideologickými pozice­
mi aktérů, či nikoli (Wagner et al., 2021). Porozumění tomu, jakým způsobem si 
relevantní političtí aktéři vědecké či šířeji expertní informace vyměňují, je tedy 
podstatnou součástí agendy výzkumu politického procesu (Weible et al., 2018). 
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Obecnou výzkumnou otázku proto formulujeme takto: Které relační mechanismy 
ovlivňují výměnu expertních informací v českém uhelném sektoru? 

Data byla posbírána prostřednictvím online dotazníku zaslaného zástup­
cům organizací v druhé půli roku 2017. Hranice sítě, tedy seznam zahrnutých 
organizací, byly stanoveny na základě dvoufázového procesu. Na základě před­
běžných rešerší a předchozího výzkumu byl nejprve vytvořen výchozí seznam, 
který byl posléze konzultován prostřednictvím expertního dotazníku zahrnující­
ho představitele průmyslu, státních institucí, nevládního sektoru a akademické 
sféry. Výsledný seznam zahrnuje 83 organizací. Návratnost činila 82 %, tj. data 
byla získána pro 68 organizací. Dotazník obsahoval tři hlavní části: politická pře­
svědčení organizací; vztahy mezi organizacemi; kontextové informace. Politická 
přesvědčení byla měřena prostřednictvím čtyř škál zachycujících jejich ekono­
mickou, environmentální, politicko-bezpečnostní a procesní složku. Relační data 
zachycují (1) politickou spolupráci, (2) výměnu expertních informací a (3) vníma­
ný politický vliv na základě odpovědí na následující položky: označte organizace, 
s nimiž Vaše organizace v posledních dvou letech v rámci uhelného sektoru (1) politicky 
spolupracovala; (2) směňovala expertní informace; a které v tomto kontextu považuje za 
(3) politicky vlivné. Na tomto základě byly zrekonstruovány tři binární orientova­
né sítě. Pro více informací stran sběru a zpracování dat viz Ocelík et al. (2019).

Specifika statistického modelování síťových dat

Jak jsme již předeslali v úvodu, statistické modelování síťových dat zásadně ovliv­
ňují dvě specifika, která prakticky znemožňují prosté převzetí metod inference 
a modelů z klasické statistické analýzy dat. Hlavním specifikem síťových dat je, 
že inherentně narušují předpoklad vzájemné nezávislosti jednotlivých pozoro­
vání (Brandes et al., 2013; Robins, 2013). Tento předpoklad v klasické statistice 
znamená, že jsou pozorování (v sociálních vědách typicky respondenti) vybrána 
z dané populace vzájemně nezávisle na sobě a že hodnoty jejich závisle proměn­
ných nejsou systematicky závislé. Narušení tohoto předpokladu se v sítích pro­
jevuje jak na úrovni uzlů, tak na úrovni vazeb. Například počet vazeb, který má 
uzel A, je jednoznačně spjatý s počtem vazeb, který má jeho soused (tj. uzel, na 
nějž má přímou vazbu), uzel B. Pokud bychom uzlu A odebrali jeho vazbu na B, 
nezmění se jen počet vazeb, který má uzel A, ale nezbytně i počet vazeb uzlu B. 
Na úrovni vazeb lze interdependenci ilustrovat příkladem, kdy pravděpodob­
nost existence vazby (např. reprezentující přátelství) mezi uzly C a D závisí na 
tom, zda mají oba tyto uzly společného přítele, uzel E. Pokud již existují přátelské 
vazby C–E a D–E, pak pravděpodobnost existence vazby, ceteris paribus, C–D 
narůstá, což je jev, kterému se říká shlukování, tranzitivita či triadická uzávěra 
(Rivera et al., 2010; Snijders, 2013). Obecně platí, že pokud je v datech přítomna 
interdependence, aplikace klasických statistických modelů není validní, neboť 
výsledné směrodatné chyby, p-hodnoty a intervaly spolehlivosti jsou zkresleny 
dvěma způsoby. Jednak chybějící informace o  interdependenci představuje de 



Stati

11

facto problém opomenuté proměnné a jednak pozorování přispívají méně nezá­
vislými informacemi do modelu, čímž se uměle snižují směrodatné chyby a p­
-hodnoty a narůstá tak riziko chyby I. druhu, resp. falešně pozitivních závěrů 
(Cranmer et al., 2020, s. 6).

Druhé specifikum statistického modelování síťových dat nemá přímý do­
pad na matematické podloží modelu nebo vychýlení p-hodnot či jiných výsled­
ků. Má však dopad na to, co lze z výsledků modelování usuzovat. Jedná se o to, 
že statistické modelování v sítích zpravidla usiluje o inferenci na model, čímž se 
liší od běžného využití statistické inference, neboť ta většinou usiluje o inferenci 
z  výběru na populaci (Snijders, 2011). Inference z  výběru na populaci (někdy 
také designově orientovaný přístup) usiluje o odpověď na otázku, zda či do jaké 
míry jsou výsledky získané na daném výběru zobecnitelné na výchozí popula­
ci. Inference na model usiluje o zodpovězení otázky, zda je možné daný model 
či mechanismus označit za adekvátní vysvětlení toho, co pozorujeme v datech. 
V síťovém výzkumu nás pak mnohdy zajímá, zda struktura dané sítě nebo nějaká 
její vlastnost (např. vysoká míra centralizace) vyvstala působením postulované­
ho mechanismu (např. tendence aktérů koncentrovat vazby kolem již centrálních 
uzlů) nebo je lze vysvětlit působením soupeřících mechanismů (např. tendence 
aktérů vyhledávat aktéry s určitými atributy) nebo náhody. A jsou to právě síťové 
mechanismy, na něž se přímo zaměřují ERGM.

Mechanismy v sociálních sítích

Pozoruhodným aspektem ERGM z hlediska sociálních věd je úzké spojení mezi 
společenskovědní teorií a  metodologickými prameny, z  nichž ERGM vychází. 
ERGM byly vyvinuty v kontextu sociálních věd primárně pro jejich potřeby, tj. za 
účelem vysvětlovat struktury sociálních sítí. Poznatky ze studia sociálních sítí 
přitom posléze informovaly další vývoj ERGM tak, aby tyto modely dokázaly 
snáze a přesněji vysvětlovat data pocházející ze společenských věd (Snijders et 
al., 2006). 

Do ERGM se toto prolnutí s teorií promítá prostřednictvím konceptu relač­
ních či síťových mechanismů. Mechanismem rozumíme specifickou konstelaci 
entit a aktivit, typicky aktérů a jejich jednání, která má tendenci generovat určitý 
typ pozorovaného jevu (Hedström, 2005, s. 2). Relační (či síťový) mechanismus 
je pak takový mechanismus, který se váže k formování vazeb v sociálních sítích 
(Rivera et al., 2010). Relační mechanismy slouží k vysvětlování vzniku, zachování 
či zániku vazeb. Jednoduchým relačním mechanismem zahrnujícím dva aktéry 
(uzly) je reciprocita definovaná jako tendence opětovat přijatou vazbu. Mechanis­
mus reciprocity je tedy zachycen konfigurací páru (dyády) zahrnující dvě oriento­
vané vazby. Zdůrazněme, že pouhé porovnání měr centrality napříč kategoriemi 
uzlů či permutování dané sítě k inferenci o tom, které mechanismy se na vzniku 
dané sítě podílely, není dostatečné, neboť v takovém případě nezohledňuje to, že 
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v sociálních sítích takřka vždy působí vícero mechanismů najednou. Kupříkladu 
vznik soudržných podskupin může být výsledkem triadické uzávěry, homofi­
lie či společného působení těchto dvou mechanismů. Naopak tendence směrem 
k  otevřeným trojúhelníkům (2-cestám) soudržnost oslabuje. Působení různých 
mechanismů, které se mohou vzájemně posilovat i oslabovat, je proto nutné sta­
tisticky kontrolovat, což umožňují právě statistické modely jako ERGM.

Poznamenejme, že v kontextu průřezových dat nelze vznik, zachování a zá­
nik dané vazby odlišit, a proto se obvykle využívají relační mechanismy k vy­
světlování prosté existence či neexistence vazeb. Svým důrazem na mechanismy 
coby mikrosociální základy, z nichž vznikají makrosociální struktury (v přípa­
dě SNA struktury sítí a jejich vlastnosti) jsou ERGM synergické s výzkumnými 
programy, které v sociálních vědách rovněž akcentují mechanistická vysvětlení 
a mikro–makro linku, v sociologii se jedná především o analytickou sociologii 
(srov. Amati a Stadtfeld, 2021; Hedström, 2005). Pro přehlednost lze relační me­
chanismy rozčlenit na tři typy: endogenní (též strukturní), atribuční (též indivi­
duální) a dyadické (Lusher a Robins, 2012). Nyní popíšeme každý z těchto typů 
a ukážeme mechanismy, jež je běžně reprezentují, přičemž tyto mechanismy ob­
ratem budeme ilustrovat na našem empirickém příkladu.

Endogenní či strukturní mechanismy jsou mechanismy, které vysvětlují 
(ne)existenci dané vazby (ne)existencí jiné vazby či vazeb v dané síti bez ohledu 
na vnější faktory. Jak je tomu kupříkladu v případě reciprocity: aby vznikla vazba 
A → B, může být postačujícím vysvětlením existence vazby v opačném směru 
(tj. B → A). Endogenní mechanismy tak explicitně odkazují na ideu sebeorgani­
zace sítí (Robins, 2015), která tvrdí, že struktura sítí nemusí být řízena nějakou 
vnější organizující entitou ani že sít jako taková nemusí být vědomou uvažující 
entitou, ale že k emergenci a vývoji struktury sociálních sítí postačují její lokální 
zárodky, z nichž se může postupně utvářet. Mezi nejčastěji zkoumané endogenní 
mechanismy v orientovaných sociálních sítích patří reciprocita, triadická uzávěra 
(tranzitivní a cyklická) a akumulace vazeb.

Reciprocita (reciprocity): reciprocita značí tendenci aktérů opětovat přijaté 
vazby. Tento mechanismus patří mezi stabilní a  silné mechanismy pozorované 
v lidských sociálních sítích, což se v obecných intencích vysvětluje tím, že prv­
ní vazba v dané dyádě vytváří podnět k odpovědi a příležitost pro vzájemnou 
interakci, což značně zvyšuje pravděpodobnost vytvoření reciproké vazby v po­
rovnání s vytvořením vazby bez prvotní interakce v opačném směru (Rivera et 
al., 2010; Snijders, 2013). V našem empirickém kontextu také očekáváme pozitiv­
ní efekt, neboť reciprocita nejenže vytváří závazky, ale zpravidla rovněž snižuje 
transakční náklady a posiluje důvěru mezi partnery (Fischer a Sciarini, 2015), což 
je obzvláště důležité v  kontextu konfliktního prostředí, jakým je český uhelný 
sektor.

Uzávěra (closure): triadická uzávěra (také tranzitivita či shlukování) značí 
tendenci aktérů utvářet uzavřené sociální struktury, které se v síti projevují jako 
uzavřené trojúhelníky (Holland a Leinhardt, 1971). Tradičně bývá opisována po­
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řekadlem o  tom, že „přítel mého přítele je i mým přítelem“, protože uzavření 
trojúhelníku znamená, že daní aktéři, mezi nimiž vzniká uzavírající vazba, již 
mají oba vazbu k  třetímu aktérovi. Uzavřené trojúhelníky (a uzavřené sociální 
struktury obecně) jsou pak považovány za atraktivní a stabilní, neboť upevňují 
vzájemnou důvěru, spolupráci, podporu a  normy v  rámci zúčastněných dyád 
díky „dohledu“ třetí strany (Coleman, 1988). V orientovaných sítích lze rozlišit 
uzávěru tranzitivní a  cyklickou (Rivera et al., 2010). V  tranzitivně uzavřeném 
trojúhelníku se vyskytuje jeden uzel se dvěma odchozími vazbami, jeden s jed­
nou příchozí a jednou odchozí vazbou a konečně jeden se dvěma vazbami pří­
chozími. Takovéto rozložení vazeb ustavuje mezi uzly hierarchii tím, že jeden 
z nich má pouze vazby příchozí (a je tak nejatraktivnější/nejpopulárnější), zatím­
co další má pouze vazby odchozí (a je tak nejvíce sociabilní/nejaktivnější). Tato 
hierarchie v případě cyklické uzávěry nevzniká, protože v cyklicky uzavřeném 
trojúhelníku má každý uzel právě jednu odchozí a právě jednu příchozí vazbu 
(Robins et al., 2009). Sdílení partnerů je ve výzkumu politických sítí považová­
no za indikaci organizační kapacity a  spolehlivosti zapojených organizací, což 
se následně promítá do obecného snižování nejistoty (Leifeld a Schneider, 2012). 
V případě orientovaných vazeb lze ovšem stanovit specifičtější očekávání. Proto­
že zdroje, mezi něž patří také expertní informace, jsou v politických sítích zpravi­
dla distribuovány nerovnoměrně (Weible et al., 2018), lze předpokládat pozitivní 
efekt tranzitivní uzávěry a negativní efekt cyklické uzávěry. Jinak řečeno, tento 
výsledek by indikoval existenci hierarchického členění sítě ve smyslu rozlišení 
mezi skupinami aktérů, kteří jsou spíše poskytovateli či příjemci expertních in­
formací (Wagner et al., 2021).

Akumulace vazeb (tie accumulation): tento mechanismus značí tendenci 
aktérů akumulovat vazby tím více, čím více jich již mají (De Solla Price, 1976). 
Důvodem pro takové jednání v síti může být to, že se aktéři, kteří již mají hod­
ně vazeb, stávají snadno viditelnými a také potenciálně výhodnými, neboť pro 
aktéry s menším počtem vazeb otevírají mnoho nových potenciálních kontaktů 
a příležitostí. Jedná se vlastně o efekt svatého Matouše (Merton, 1968) v sociál­
ních sítích. Tuto obecnou tendenci lze předpokládat také v případě politických 
sítí, kde jsou aktéři s vyšším počtem vazeb ostatními zpravidla rozeznáváni jako 
vlivní, což dále zvyšuje jejich atraktivitu. Odpovídající konfigurace tedy zahrnu­
jeme pro kontrolu tohoto mechanismu.

Atribuční mechanismy vysvětlují existenci dané vazby působením proměn­
ných na úrovni uzlů, kterým se v SNA běžně říká atributy. Atributy mohou zvy­
šovat či snižovat pravděpodobnost existence vazby A → B v orientované síti na 
straně uzlu A či B nebo na obou uzlech. Konkrétní způsob, jak daný atribut může 
působit na formaci vazeb v  pozorované síti, závisí na tom, jakým typem pro­
měnné tento atribut je. U binárních atributů je to prostě jeho přítomnost, absence 
či podobnost v  rámci dané dyády, zatímco u kardinálního atributu lze uvažo­
vat o různých hladinách daného atributu a jeho rozdílech, kumulaci či průměru 
mezi danými dvěma uzly.
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Aktivita (activity): aktivitou v souvislosti s individuálním atributem máme 
na mysli tendenci aktérů s daným atributem vysílat více či méně vazeb v závislos­
ti na úrovni daného atributu (Amati a Stadtfeld, 2021). Obecným zdůvodněním 
je, že úroveň daného atributu usnadňuje utváření vazeb nebo zvyšuje pravděpo­
dobnost, že budou aktéři v síti aktivní. V našem případě je takovým atributem typ 
organizace, kde standardně rozlišujeme mezi: státními organizacemi, politickými 
stranami, průmyslem, environmentálními nevládními organizacemi (ENGOs) 
a výzkumnými organizacemi. Nejvíce nás zajímá aktivita průmyslových aktérů 
a ENGOs reprezentujících soupeřící společenské zájmy. Lze předpokládat, že obě 
skupiny se budou prostřednictvím poskytování expertizy – především státním 
aktérům a politickým stranám – pokoušet ovlivňovat jejich rozhodování. Stejnou 
tendenci lze očekávat také v případě organizací z výzkumného sektoru, jejichž 
primárním účelem je právě produkce a poskytování expertních informací.

Atraktivita (attractivity): atraktivitou v souvislosti s  individuálním atribu­
tem v protikladu k aktivitě rozumíme tendenci aktérů s daným atributem přijímat 
více či méně vazeb v závislosti na úrovni daného atributu (Amati a Stadtfeld, 
2021). Obecně řečeno, toto se může dít proto, že aktéři s daným atributem před­
stavují lukrativní partnery nebo je jejich atribut v dané síti hodnotným zdrojem. 
V případě sítě organizací zapojených v českém uhelném sektoru jde o organiza­
ce vládnutí, tj. kompetentní ministerstva nebo specializované agentury, a  dále 
rovněž politické strany kontrolující politický proces. Tyto organizace jsou proto 
obvyklým „cílem“ organizací, zde fosilního průmyslu a ENGOs, prosazujících 
specifické společenské zájmy. Toto ovlivňování probíhá rovněž prostřednictvím 
poskytování expertizy.

Homofilie (homophily): homofilie patří mezi jednu z nejčastěji pozorovaných 
empirických regularit napříč různými kontexty v sociálněvědním výzkumu, a to 
i mimo SNA (McPherson et al., 2001). Jedná se o  tendenci aktérů, kteří jsou si 
vzájemně podobní v nějakém relevantním atributu, být vzájemně propojeni také 
vazbou (McPherson et al., 2001; Rivera et al., 2010). Zde se jedná o homofilii po­
litických přesvědčení (ideologickou homofilii) a interorganizační homofilii. Za­
tímco v prvním případě jde o tendenci navazovat vazby mezi aktéry s podobným 
politickým přesvědčením, jakým může být např. podpora uhlíkové daně, inter­
organizační homofilie zachycuje tendenci navazovat vazby mezi organizacemi 
stejného typu. Toto očekávání vyplývá především z obecné funkční diferenciace 
politického systému, kde je v případě některých typů organizací vzájemná vý­
měna (expertních) informací formálně vyžadována (státní aktéři) či přímo sou­
visí s jejich zaměřením (výzkumné organizace). Dalším důvodem může být vni­
troskupinové sdílení zdrojů, zde tedy expertizy, s cílem efektivního ovlivňování 
politického procesu (především ENGOs).

Dyadické mechanismy vysvětlují existenci dané vazby odkazem na faktor, 
který exogenně (tj. z vnějšku sítě, jejíž vazby chceme vysvětlovat) působí na da­
nou dyádu. Dyadické mechanismy tak zachycují, jak přítomnost dyadických fak­
torů usnadňuje vznik vazby v síti nebo mu naopak zabraňuje. Takovým faktorem 
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může být třeba geografická blízkost, která se projevuje v mechanismu propinkvi­
ty (propinquity), kdy prostorově si bližší uzly mají vyšší pravděpodobnost, že 
spolu budou interagovat (Daraganova et al., 2012). Značné teoretické i empirické 
pozornosti se ve výzkumu sociálních sítí dostává tzv. multiplexním sítím, což 
jsou sítě s více rozdílnými typy vazeb mezi jednou množinou uzlů (Wang, 2013).

Strhávání vazeb (tie entrainment): Strhávání vazeb je mechanismus často po­
zorovaný v multiplexních sítích, kdy existence vazby mezi danými dvěma aktéry 
zvyšuje pravděpodobnost vytvoření vazby v jiné síti mezi těmito dvěma aktéry 
(Wang, 2013). V našem případě chceme vysvětlit síť výměny expertních informa­
cí za pomoci vazeb v dalších dvou sítích, konkrétně v síti politické spolupráce 
a vnímaného vlivu. V případě, že mezi aktéry existuje spolupráce, jako například 
koordinace postojů k chystané legislativě, stává se výměna expertních informa­
cí zpravidla součástí tohoto procesu. Aktéři rovněž mohou poskytovat expert­
ní informace s cílem ovlivnit pozici (politické přesvědčení) příjemce. Pokud jde 
o (vnímaný) vliv dané organizace, dosavadní výzkum široce zdokumentoval ten­
denci, že vlivné organizace jsou zpravidla častěji vyhledávány jako partneři pro 
spolupráci (Weible et al., 2018). Obdobný vzorec, i vzhledem k výše uvedenému, 
lze očekávat v případě výměny informací. Z těchto důvodů tedy očekáváme po­
zitivní efekty v případě obou sítí.

Exponenciální modely náhodných grafů

Jednotlivé mechanismy popsané v předchozí sekci jsou přímo spojeny s tím, jak 
se ERGM specifikují v praxi. Klíčové je, že výzkumníci specifikují daný model 
tím, že na základě svých teoretických a substantivních poznatků nejprve iden­
tifikují ty mechanismy, jejichž vliv v síti chtějí zkoumat, a následně tyto mecha­
nismy operacionalizují jako tzv. konfigurace (Lusher a Robins, 2012). Konfigurace 
je podgraf (tj.  podmnožina uzlů a  vazeb mezi nimi), který reprezentuje určitý 
mechanismus. Tabulka 1 zachycuje všechny mechanismy, které v našem přípa­
dě zkoumáme (a specifikujeme jimi tedy model) a jim odpovídající konfigurace. 
Každá konfigurace přitom má nejen svou vizuální podobu, ale i své matematické 
vyjádření (vzorec), což umožňuje jejich užití ve statistickém modelu. Například 
počet reciprokých dyád M (konfigurace mutual) lze vyjma grafického zobrazení 
reciproké vazby vyjádřit také jako součet součinu matice sousednosti Xij a  její 
transpozice Xji (Wasserman a Faust, 1994).

(1) M = ∑i<j XijXji

Zjednodušeně řečeno, ERGM se na základě takto specifikované sady konfigurací 
nejprve snaží pomocí simulací vytvořit distribuci sítí podobných té pozorova­
né  (x) v  modelovaných statistikách, tj. pozorovaných počtech konfigurací z(x) 
zahrnutých v modelu. Na základě takovéto distribuce ERGM následně odhadu­
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je hodnotu parametrů θ vyjadřující významnost jednotlivých konfigurací pro 
strukturu dané sítě (Harris, 2014; Robins a Lusher, 2012). Pozitivní hodnoty jed­
notlivých parametrů připisují vyšší pravděpodobnost grafům z  vygenerované 
distribuce, které obsahují vyšší počet dané konfigurace, zatímco negativní hod­
noty parametrů připisují grafům s nižším počtem dané konfigurace pravděpo­
dobnost nižší.

                                                   ∑x θ’z(x)   2

(2) P(X = x) = ———— 
                                                                     k

Cílem ERGM je tedy odhadnout vektor parametrů θ’ pro statistiky z(x) spočte­
né na pozorované síti tak, aby maximalizoval pravděpodobnost pozorované sítě 
x vůči všem možným sítím stejné velikosti. Statistiky z(x) jsou dány specifikací 
modelu, a kromě průsečíku (počtu vazeb) mohou zahrnovat pozorované počty 
určitých atributů, reciprokých dyád, tranzitivních uzávěr (viz Tabulka 1) a po­
dobně (viz Cranmer et al., 2020). Všimněme si, že vektory odhadů parametrů pro 
zahrnuté statistiky jsou uvnitř exponentu – odtud tedy přívlastek exponenciální 
v názvu modelu3.

(3) k = ∑x exp(θ’z(x*))

Normalizující konstanta k  (rovnice 3) aproximuje distribuci všech možných sítí 
dané velikosti. I v případě sítí s triviálně malým počtem uzlů je totiž počet všech 
možných sítí, které lze na dané množině uzlů zkonstruovat, extrémně vysoký 
(konkrétně 2n(n−1) pro orientované sítě4), výše uvedenou rovnici (2) tak není možné 
vyřešit analyticky ani empiricky (Snijders a Koskinen, 2012). Proto se k výpočtu 
ERGM používají simulace. Tyto simulace zde popíšeme intuitivně, přičemž čte­
nářům, kteří by se chtěli dozvědět více o technických detailech, můžeme doporu­
čit příslušné kapitoly v pracích Harris (2014) či Lushera a kolegů (2012). 

Odhad parametrů v modelu je prováděn běžně metodou stochastické apro­
ximace (stochastic approximation) (Snijders, 2002) ve třech fázích tak, aby vektor 
parametrů θ maximalizoval pravděpodobnost pozorovaných dat, jak je běžné 
u  odhadů pomocí metody maximální věrohodnosti (maximum likelihood) (Sni­
jders a Koskinen, 2012). První fáze, inicializace, „nahrubo“ zkouší simulovat malé 
množství sítí a z nich zjednodušeně odhadnout parametry θ jako základ pro dru­
hou fázi. Ve druhé fázi, optimalizaci, jsou iterativně simulovány sítě tak, aby se co 
nejvíce podobaly síti pozorované, přičemž se zároveň po každé simulaci upravují 
hodnoty parametrů tak, aby stále maximalizovaly pravděpodobnost pozorova­

2  V literatuře se objevují i jiné, avšak ekvivalentní varianty této rovnice. Zde se odvolává­
me na její podobu v úvodním článku Robinse et al. (2007).
3  Přesnější, avšak v praxi nepříliš často užívané je označení exponential-family random graph 
model.
4  Pro představu: orientovaná síť s pěti uzly má 220, tj. více než milion, možných grafů.
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ných dat tak, aby rozdělení takto nasimulovaných sítí bylo v průměru totožné 
s pozorovanou sítí z hlediska v modelu zahrnutých konfigurací. Konečně, ve třetí 
fázi dochází jednak k výpočtu směrodatných chyb, které umožňují statistickou 
inferenci, a jednak k ověření konvergence modelu, k čemuž slouží výpočet t-po­
měru (rovnice 4). 

                             průměrná hodnota simulované statistiky – hodnota pozorované statistiky
 (4) t-poměr = ————————————————————————————
                                            směrodatná odchylka hodnoty simulované statistiky

Pokud je hodnota t-poměru blízká nule, značí to, že vygenerovaná distribuce sítí 
je blízká pozorované síti, co se dané statistiky zachycující danou konfiguraci týče. 
Jsou-li t-poměry všech modelovaných statistik dostatečně blízké nule, hovoříme 
o  konvergenci modelu. V  praxi se za dostatečné považují t-poměry, které jsou 
menší než 0,1 v absolutní hodnotě. Jde o žádoucí stav, protože to znamená, že od­
hady parametrů a související směrodatné chyby jsou spočteny na základě distri­
buce grafů, která je v průměru podobná námi pozorované síti, a naše závěry tak 
pochází z realistické referenční distribuce. V balíku statnet v R je rovnou testová­
na různost t-poměrů od nuly, přičemž pochopitelně zde usilujeme o nezamítnutí 
nulové hypotézy, tj. o vyšší p-hodnoty.

Podobně jako u logistické regrese je možné označit odhady, jejichž hodno­
ta má podíl ke směrodatné chybě vyšší než 2 v absolutní hodnotě za statisticky 
významné, což odpovídá hladině významnosti 0,05 podle přibližného Waldova 
testu. Statisticky významný odhad lze v takových případech považovat za nenu­
lový a lze z něj usoudit na to, že v síti působí mechanismus, který daná konfigu­
race operacionalizuje. Výsledné odhady parametrů v ERGM jsou vyjádřeny jako 
logaritmované šance, jejichž interpretace je opět analogická s logistickou regresí. 
Kladné hodnoty indikují, že zvýšení počtu dané konfigurace o jedna, ceteris pari­
bus, zvyšuje pravděpodobnost výskytu vazby, zatímco záporné hodnoty indikují 
snížení této pravděpodobnosti. Hodnoty odhadů parametrů a jejich směrodatné 
chyby lze také využít ke konstrukci intervalů spolehlivosti, jak je u statistických 
modelů obvyklé. Obdobně jako u logistické regrese lze také přepočítat logaritmo­
vané šance na šance a pravděpodobnosti5. Při počítání pravděpodobnosti vzniku 
dané vazby je však nutné mít na paměti, že konfigurace v ERGM jsou uspořádány 
hierarchicky a  jejich hierarchii je pro správnou interpretaci nutné respektovat. 
Například trojúhelník v neorientované síti sestává ze tří vazeb a ze tří cest o dél­
ce dva (2-cesta, two-path). Pokud bychom tedy chtěli vyjádřit pravděpodobnost 
vzniku vazby v trojúhelníku, musíme také započítat efekt průsečíku modelu (in-
tercept, značí výchozí pravděpodobnost existence vazeb mezi náhodným párem 
uzlů) a efekt 2-cest.

Pro posouzení, zda daný model skutečně adekvátně reprodukuje modelo­

5  Konverzi logaritmovaných šancí na pravděpodobnosti provedeme jako  
exp(logit) / (1 + exp(logit)). 
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Tabulka 1. �ERGM efekty, grafické znázornění odpovídajících konfigurací a jejich 
interpretace

                    Efekt                                         Konfigurace                 Mechanismus/interpretace

edges	 průsečík modelu; obecná 
	 tendence vysílat vazby

mutual	 reciprocita

edgecov	 strhávání vazeb

nodeifactor	 atraktivita založená 
	 na kategoriálním atributu

nodeofactor	 aktivita založená 
	 na kategoriálním atributu

nodematch	 homofilie na kategoriálním 
	 atributu

nodecov	 aktivita/atraktivita založená 
	 na kardinálním atributu

absdiff

	 homofilie na kardinálním 
	 atributu; negativní efekt značí 
	 tendenci nominovat méně 
	 odlišné aktéry

gwideg	 akumulace příchozích vazeb 
	 (preferenční náklonnost)

gwodeg
	 akumulace odchozích vazeb; 

	 kontrola pro tendenci častých 
	 nominací

gwesp.OTP	 tranzitivní uzávěra

gwesp.ITP	 cyklická uzávěra

gwdsp.OTP

	 vícenásobná nepřímá 
	 propojenost (2-cesta); efekt 
	 nižšího řádu pro cyklickou 
	 a tranzitivní uzávěru
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vanou síť, a tedy zda dobře „sedí“ na daná data, je nutné ověřit shodu modelu 
s daty (goodness of fit). K tomu se používají simulace z konvergovaného modelu, 
jejichž prostřednictvím se vygeneruje velké množství sítí a ty se následně porov­
nají s pozorovanou sítí na základě zvolených celosíťových (globálních) charakte­
ristik. Těmi běžně bývají distribuce stupňů, centralizace, distribuce geodetických 
vzdáleností a koeficient shlukování. Charakteristiky sítě jako celku totiž nejsou 
v modelu zahrnuty přímo, protože je nelze ze své podstaty přímo zachytit pro­
střednictvím (lokálních) konfigurací. Pokud model s danou specifikací relevantní 
strukturní charakteristiky dobře reprodukuje, lze považovat dané mechanismy 
za postačující ke vzniku sítě a lze tedy říct, že naše teoretická představa o tom, 
které mechanismy zapříčinily vznik sítě tak, jak ji pozorujeme v datech, je ade­
kvátní. Prakticky lze ověření shody modelu s daty provést buď pomocí výpočtu 
t-poměrů, jak je popsáno výše (rovnice 3)6, nebo graficky prostřednictvím krabi­
cových či houslových grafů. Pokud daná nemodelovaná vlastnost není extrémní 
vzhledem k simulované distribuci sítí, za což se považuje hodnota t-poměru větší 
než 1,96 v absolutní hodnotě či vizuální umístění v okrajích rozdělení v krabico­
vém nebo houslovém grafu, pak můžeme říct, že daný model dobře reprodukuje 
strukturu sítě jako celek.7

ERGM modely jsou poněkud neblaze proslulé potížemi s konvergencí. To 
v  praxi znamená, že se simulačnímu algoritmu nedaří adekvátně reproduko­
vat modelované statistiky na základě pozorované sítě. Simulovaná distribuce se 
v tomto případě výrazně odlišuje od pozorované sítě. Problémy s konvergencí se 
týkají i  jiných modelů využívajících princip maximální věrohodnosti. U  klasic­
kých statistických modelů ale tento problém nastává zpravidla jen v extrémních 
případech jako při kompletní separaci či vysoké kolinearitě prediktorů. U ERGM 
se jedná spíše o pravidlo nežli výjimku. Je to způsobeno komplexitou, kterou do 
modelu vnášejí endogenní efekty, které reprezentují zásadní relační mechanismy 
jako akumulace vazeb nebo triadická uzávěra. Původně se pro zachycení struktur­
ních mechanismů používaly tzv. Markovovy konfigurace (typicky trojúhelník pro 
triadickou uzávěru a n-hvězdy pro zachycení distribuce stupňů). Tyto konfigurace 
jsou sice intuitivní, v praxi ale často neumožňovaly simulovat realistickou distri­
buci sítí pro spočtení odhadů parametrů a směrodatných chyb, neboť v simulacích 
vedly tyto konfigurace k vytváření distribucí buď téměř prázdných (bez vazeb), 
nebo naopak téměř plných (se všemi vazbami) sítí. Řešením tohoto problému byla 

6  Simulace a t-poměry se tedy v rámci ERGM používají dvakrát. Nejprve se používají pro 
vygenerování referenční distribuce sítí, které jsou z hlediska modelovaných konfigurací co 
nejpodobnější pozorované síti. Poté se používají k ověření shody modelu s daty, kdy se 
zjišťuje, zda nemodelované charakteristiky sítě nejsou příliš nepodobné pozorované síti.
7  Kromě grafického zobrazení a t-poměrů nabízí výstup funkce ergm také hodnoty Akai­
keho informačního kritéria (AIC) a Bayesovského informačního kritéria (BIC). AIC a BIC 
by neměly sloužit pro komplexní hodnocení shody modelu s daty, vhodné jsou především 
pro srovnání modelů zahrnující stejné konfigurace s odlišnými parametry α (viz Harris, 
2014).
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formulace tzv. alternujících či geometricky vážených efektů (alternating, geometri-
cally weighted; Snijders et al., 2006), jaké používáme v našem modelu i my a jež jsou 
ilustrovány v tabulce 1. Výchozí myšlenkou těchto efektů je, že v sociální realitě se 
zpravidla vazby nevyskytují v izolovaných konfiguracích, ale jsou často ukotvené 
v mnoha konfiguracích téhož druhu (třeba v trojúhelnících) zároveň. Ilustrujme 
to na příkladu. Pokud mají uzly C a D společného přítele, zvyšuje se pravděpo­
dobnost, že budou samy také přátelé. S každým dalším společným přítelem, kte­
rého C a D mají, tato pravděpodobnost dále narůstá, nikoliv však lineárně, nýbrž 
s  určitým mezním přírůstkem, neboť rozdíl mezi 19 a  20 společnými přáteli je 
zanedbatelný, zatímco rozdíl mezi žádným a jedním společným přítelem je vel­
ký. Geometricky vážené konfigurace progresivně snižují váhu, kterou simulační 
algoritmy přikládají dalším a dalším konfiguracím ukotveným ve stejné dyádě. 
Díky tomu jsou simulované grafy daleko podobnější skutečným sociálním sítím 
a mnohem spíše dávají oporu pro realistickou statistickou inferenci.

Výsledky

Začněme nejprve shrnutím popisných charakteristik sítě výměny informací. Síť 
je tvořena 68 uzly a 787 orientovanými vazbami. Hodnota hustoty sítě je 0,17, což 
znamená, že je přítomno 17 % ze všech vazeb, které by organizace mohly v síti 
navázat. Síť neobsahuje žádné izoláty a průměrný stupeň uzlu je 23 se směrodat­
nou odchylkou 13,4. Průměrný počet vazeb, příchozích i odchozích, je tedy cca 
23, což představuje přímé spojení v průměru se 34 % z 68 organizací tvořících 
síť. Hodnota reciprocity spočtená jako podíl reciprokých vazeb na počtu všech 
vazeb činí 0,4. Hodnota tranzitivity spočtená jako průměrná hustota sousedství 
každého uzlu je 0,55. Tyto hodnoty ve srovnání s pozorovanou hodnotou hustoty 
(0,17) ukazují na úroveň reciprocity a tranzitivity v celé síti, netestují ale přímo 
tendence k nim. To nám ukáže až aplikace ERGM. Data a skript provázející celou 
analýzou vč. rozsáhlých anglických komentářů jsou dostupné online jako příloha 
elektronické verze článku8.

V této sekci se podrobně podíváme na výsledky našeho ERGM s důrazem 
na postup při modelování a následnou substantivní interpretaci výsledků. Ta­
bulka 2 ukazuje průběžné výsledky od nulového modelu (model 0) až po model 
finální zahrnující všechny substantivní i kontrolní konfigurace (model 4) s tím, 
že každý následující model vždy zahrnuje efekty obsažené v modelech předcho­
zích. Všechny výsledky jsou založeny na adekvátně konvergovaných modelech.

Model 0 je nulovým modelem, obsahuje tedy pouze průsečík (edges) a jeho 
výsledky indikují, jaká je pravděpodobnost výskytu vazby v síti za předpokladu, 
že ignorujeme jakékoliv další informace. Pro ERGM v sociálních sítích je typic­
ké, že je tento efekt silně záporný (−1,57), což znamená, že výskyt vazby je spí­

8  https://doi.org/10.13060/csr.2023.046 

https://orcid.org/0000-0001-7239-8466


Stati

21

Graf 1. �Sociogram sítě výměny informací mezi organizacemi zapojenými v českém 
uhelném sektoru
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še nepravděpodobný (17 %). Všimněme si, že pokud převedeme odhady efektů 
z  logaritmovaných šancí na pravděpodobnosti9, získáme hodnotu pozorované 
hustoty sítě (0,17).

Model  1 přidává k  nulovému modelu efekt reciprocity (mutual). Ten je 
naopak silně pozitivní (1,53) a názorně ilustruje, jak zahrnutí další konfigurace 
v modelu ovlivňuje pravděpodobnost výskytu vazby. Pravděpodobnost výskytu 
vazby je obecně 17 %, ale pokud má daná vazba protějšek v opačném směru, pak 
je pravděpodobnost jejího výskytu výrazně vyšší (40  %)10. Odhady parametrů 
v dalších modelech je možné interpretovat analogicky.

Model 2 přidává efekty související s působením dyadických mechanismů 
(edgecov), konkrétně se jedná o strhávání vazeb na základě spolupráce a vníma­
ného vlivu. Oba tyto efekty jsou výrazně pozitivní, přičemž efekt strhávání vazeb 
na základě spolupráce je téměř šestkrát silnější než na základě vnímaného vlivu. 
Ve zkratce, model 2 ukazuje, že jak reciprocita, tak strhávání vazeb na základě 
obou dále měřených sítí výrazně zvyšují pravděpodobnost výskytu vazeb v síti 
výměny informací mezi organizacemi zapojenými v českém uhelném sektoru.

Model 3 zahrnuje na první pohled výrazně vyšší množství konfigurací, ne­
boť jsou v  něm obsaženy atribuční mechanismy, a  to prostřednictvím aktivity 
(nodeofactor), atraktivity (nodeifactor) a homofilie (nodematch pro kategoriální atri­
but a  absdiff pro kardinální). Pro každou kategorii typu organizace je spočten 
separátní koeficient a jeho směrodatná chyba. Nejprve podotkněme, že přidání 
konfigurací pro atribuční mechanismy do modelu v zásadě nezměnilo hodnotu 
odhadů již obsažených v modelu 2. Referenční kategorií pro proměnnou typ or­
ganizace jsou environmentální nevládní organizace (ENGOs). Z výsledků vidí­
me, že politické strany a státní organizace jsou v síti statisticky významně méně 
aktivní než ENGOs. U atraktivity uzlů na základě jejich typu vidíme pouze jeden 
statisticky významný koeficient, a to pro politické strany, který značí, že politic­
ké strany přijímají významně méně informací než environmentální organizace. 
Další organizace se však významně od environmentálních z hlediska atraktivity 
neliší. Co se politických přesvědčení jednotlivých organizací týče, tak záporný 
a  statisticky významný efekt pro konfiguraci absolutního rozdílu mezi dvěma 
uzly značí, že čím je větší rozdíl v přesvědčeních mezi danými dvěma uzly, tím 
menší je pravděpodobnost, že mezi nimi bude vazba. Tento výsledek tak zna­
čí homofilii, neboť více si ideologicky podobné organizace (s menším rozdílem 
v přesvědčeních) mají vyšší pravděpodobnost výměny informací.

Při pohledu na výsledky ověření shody modelu  3 s  daty vidíme, že jak­
koliv mohou jeho výsledky dávat na první pohled smysl, nejedná se o model, 
který by byl dostatečný pro vysvětlení toho, jaké mechanismy utváří strukturu 

9  Z logaritmovaných šancí získáme pravděpodobnost následující transformací  
exp(−1,57)/(1 + exp(−1,57)) = 0,17.
10  Pravděpodobnost, že nová vazba dotvoří reciprokou dyádu, spočteme jako  
exp(−1,95 + 1,54)/(1 + exp(−1,95 + 1,54)) = 0,4.
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námi studované sítě. Distribuce sítí vygenerovaná na základě modelu 3 se totiž 
statisticky významně liší od charakteristik pozorované sítě: model nedokáže re­
produkovat rozdělení odchozích a částečně ani příchozích stupňů (zde nezobra­
zeno), zcela míjí rozdělení počtu 2-cest (společných partnerů propojených dyád; 
edge-wise shared partners) a do značné míry i rozdělení geodetických vzdáleností. 
To dokumentují grafy 2 a 3, v nichž jednotlivé krabicové diagramy představují 
rozdělení proporce dyád (resp. vazeb) s hodnotou dané statistiky (graf 2 – počtu 
daných geodetických vzdáleností, graf 3 – počtu 2-cest) uvedené na vodorovné 
ose vzešlé z tisíce simulací z daného modelu. Černá křivka v grafech představuje 
hodnoty v pozorované síti, přičemž pokud tato křivka kopíruje krabicové diagra­
my, pak to značí, že model dobře reprodukuje danou charakteristiku sítě. Grafy 
4 a 5 lze číst analogicky. Z tohoto všeho lze usoudit, že v modelu 3 chybí další 
konfigurace, které by jej učinily realističtějším.

Finální model 4 zahrnuje konfigurace pro všechny uvažované substantiv­
ní mechanismy (včetně strukturních) i kontrolní proměnné, jejichž přidáním by 
výsledný model mohl být adekvátně schopný postihnout strukturu sítě. I při zo­
hlednění strukturních mechanismů mají stále statisticky významný a pozitivní 
efekt konfigurace reprezentující strhávání vazeb na základě spolupráce mezi or­
ganizacemi a vnímaného vlivu. U strhávání vazeb výměny informací na základě 
spolupráce se přitom jedná o nejsilnější efekt v celém modelu. Co se mechanismů 
atraktivity a  aktivity týče, statisticky významně méně aktivní i  atraktivní jsou 
v  síti výměny informací politické strany. V případě atraktivity jsou navíc ještě 
na hranici statistické významnosti méně atraktivní profesní nevládní organiza­
ce. Státní organizace jsou pak statisticky významně méně aktivní. Další efekt, 

Graf 2. Shoda modelu 3 s daty pro rozdělení geodetických vzdáleností
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který se nezměnil po přidání strukturních konfigurací, je absolutní rozdíl v po­
litických postojích mezi informačně propojenými informacemi. I nadále je tento 
efekt významně negativní, takže model 4 potvrzuje homofilní tendence organizací 
k vytváření vazeb na základě ideologické podobnosti. Pozitivní a statisticky vý­
znamný efekt homofilie na základě typu organizací (nodematch) indikuje, že orga­
nizace, které jsou stejného typu, mají vyšší pravděpodobnost výměny informa­
cí. Konečně, mezi strukturními mechanismy nacházíme tři statisticky významné 
efekty. Prvním z nich je efekt geometricky vážených vstupních stupňů (gwidegree),  
který operacionalizuje tendence aktérů k akumulaci příchozích vazeb. Pozitivní 
hodnota tohoto koeficientu poněkud neintuitivně indikuje tendenci, tedy že or­
ganizace v  síti mají tendence příchozí vazby výměny informací neakumulovat. 
Obecně lze říci, že pozitivní hodnota koeficientu značí, že pravděpodobnost vazby 
je vyšší pro uzly s nižším nežli vyšším stupněm (počtem vazeb) – distribuce stup­
ňů se stává více vyrovnanou. Negativní hodnota značí, že tato pravděpodobnost 
je vyšší naopak pro uzly s vyšším nežli nižším stupněm – distribuce stupňů se stá­
vá více nerovnou. Negativní hodnoty tedy indikují tendence ke koncentraci vazeb, 
zatímco pozitivní hodnoty indikují decentralizaci vazeb v síti (Levy, 2016). Slabě 
negativní hodnotu má koeficient geometricky váženého počtu 2-cest (gwdsp.OTP).  
Tato konfigurace zachycující otevřené trojúhelníky byla zahrnuta coby kontrolní 
konfigurace nižšího řádu pro uzavřené ukotvené trojúhelníky (gwesp) operacio­
nalizující triadickou uzávěru. Triadická uzávěra je modelována dvěma teoreticky 
relevantními způsoby: tranzitivně (tedy hierarchicky; konfigurace gwesp.OTP) 
a cyklicky (tedy decentralizovaně; konfigurace gwesp.ITP). Statisticky významně 
pozitivní je hodnota parametru konfigurace pro tranzitivní uzávěru, což značí, 
že organizace mají tendenci sdílet informace s  těmi, se kterými mají společné 

Graf 3. �Shoda modelu 3 s daty pro rozdělení dvou-cest (společných partnerů 
propojených dyád)
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informační partnery, čímž dochází k uzavírání trojúhelníků. Takto vyvstávají lo­
kální hierarchie, kde jsou některé organizace pouze příjemci informací, jiné jsou 
příjemci i poskytovateli a některé jsou pouze poskytovateli.

Model 4 na data „sedí“ výrazně lépe než model 3. Za prvé, model vyka­
zuje adekvátní konvergenci. Modelované statistiky jsou zachyceny přesně a vý­

Graf 4. Shoda modelu 4 s daty pro rozdělení geodetických vzdáleností

Graf 5. �Shoda modelu 4 s daty pro rozdělení dvou-cest (společných partnerů 
propojených dyád)
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sledky modelu jsou tak založené na adekvátní referenční distribuci. Za druhé, 
vidíme také značné zlepšení, co se přímo nemodelovaných celosíťových (globál­
ních) charakteristik týče. Rozdělení počtu sdílených partnerů propojených dyád 
(2‑cest) a  geodetických vzdáleností model reprodukuje velice přesvědčivě, za­
tímco rozdělení odchozích (odegree) a  příchozích stupňů (idegree) vykazuje jen 
drobné odchylky v několika málo částech distribuce (grafy 4 a 5).

Zmiňme ještě krátce technické aspekty výše uvedených ERGM modelů. Pro 
všechny modely byla využita nová verze 4.0 balíku ergm v  R (Krivitsky et al., 
2022), který je součástí seskupení dalších balíků pro SNA zvané statnet. Alterna­
tivně lze k výpočtu ERGM použít software PNet (Wang et al., 2009), který ale není 
implementován v R a neumožňuje práci ani s jiným kódem/syntaxí, kvůli čemuž 
je hůře reprodukovatelný. PNet ovšem na druhou stranu nabízí větší množství 
konfigurací, které lze modelovat. Nehledě na konkrétní software, výpočet ERGM 
je mnohdy doprovázen komplikacemi s konvergencí, které patrně tvoří největ­
ší bariéru pro jeho častější užití. Tyto problémy lze minimalizovat následujícími 
způsoby:

(1) Postupné přidávání konfigurací od modelu nulového až po model obsa­
hující teoreticky relevantní strukturní mechanismy, které jsou nejkomplexnější. 
U každého průběžného modelu lze přitom jednak pozorovat chování modelu, ale 
především lze použít výsledky z konvergentního modelu jako výchozí hodnoty 
pro model s přidáním nových konfigurací, což pomáhá při simulacích referenční 
distribuce sítí (Harris, 2014).

(2) Práce s technickými parametry modelu, zejména s množstvím simulací, 
které simulační algoritmus zkouší před konvergencí. Toho lze docílit prostřed­
nictvím zvýšení velikosti výběru z možných sítí (statnet), resp. multiplikačního 
faktoru (PNet). To ovšem zvyšuje čas, který si výpočet ERGM žádá. Pro předsta­
vu: model 4 s nastavením výchozích odhadů na základě modelu 3 zabral na PC 
s operační pamětí 16 GB RAM a procesorem 2,60 GHz cca 14 minut. V R je možné 
tento proces zrychlit paralelizací na více jader procesoru.

(3) Omezení (constraint) simulací jen na podmnožinu přípustných sítí. 
V praxi to znamená, že simulační algoritmus nesimuluje určité typy sítí, protože 
jsou nerealistické nebo přímo nemožné z povahy výzkumu či jeho designu. Často 
se například fixuje hustota sítě, což znamená, že se neodhaduje průsečík (edges) 
modelu a simulace pracují pouze se sítěmi se stejným počtem vazeb, jako má síť 
pozorovaná. Jindy je možné zafixovat rozdělení odchozích stupňů, což se hodí 
v situacích, kdy je v dotazníkovém šetření respondentům umožněno nominovat 
jen omezené množství ostatních jako příjemce vazeb.

Nová verze ergm 4.0 nejenže urychluje celý proces simulací a  výpočtů 
ERGM, ale navíc do značné míry automatizuje bod 2, neboť se simulační algorit­
mus snaží průběžně upravovat algoritmická nastavení tak, aby další iterace měla 
co největší šanci na konvergenci. Tato novinka z počátku roku 2022 je doposud 
málo vyzkoušená, má nicméně potenciál revolučním způsobem usnadnit práci 
s ERGM.
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Diskuse

Záměrem tohoto článku bylo představit základní předpoklady a  komponenty 
exponenciálních modelů náhodných grafů (ERGM) na příkladu sítě výměny ex­
pertních informací v  českém uhelném sektoru. Připomeňme, že ERGM umož­
ňuje na rozdíl od klasických statistických přístupů explicitně modelovat inter­
dependence v síťových datech a vysvětlovat formování vazeb v pozorované síti 
prostřednictvím souboru relačních mechanismů. Silnou stránkou ERGM je, že 
umožňuje současně testovat vícero teoreticky relevantních, mnohdy soupeřících 
vysvětlení formování vazeb. Přitom je možné zahrnout tři typy relačních mecha­
nismů: atribuční, dyadické a strukturní. Právě této flexibilitě, a z ní vyplývají­
cí schopnosti zachycovat komplexní společenskovědní koncepty a  teorie, vděčí 
ERGM za svou rychle rostoucí oblibu.

Cílem výzkumu bylo zjistit, které relační mechanismy ovlivňují výměnu 
expertních informací. Výsledky finálního modelu ukázaly působení hned něko­
lika relačních mechanismů. Jde-li o atribuční mechanismy, zajímavým výsledkem 
je v porovnání s  referenční kategorií environmentálních organizací nižší atrak­
tivita politických stran. To lze přičíst tomu, že v  českém kontextu k  formulaci 
politik dochází zpravidla na úrovni kompetentních ministerstev a specializova­
ných institucí, nikoliv politických stran. Politické strany současně vykazují nižší 
aktivitu, což značí, že se výměny expertních informací účastní obecně méně než 
ostatní typy organizací. Méně aktivní jsou také státní organizace. Lze spekulovat, 
že vzhledem ke své klíčové pozici v politickém procesu nejsou tyto organizace, 
zahrnující i zmíněná kompetentní ministerstva, motivovány k předávání expert­
ních informací vně okruh organizací vládnutí. To je konzistentní s přítomností 
interorganizační homofilie, tj. tendence organizací stejného typu vytvářet vazby, 
podporující předpoklad významu funkcionální diferenciace v rámci sledované­
ho subsystému. Sledovat lze také ideologickou homofilii. Ideologická homofilie 
byla široce zdokumentována v případě sítí spolupráce v kontextu konfliktních 
subsystémů (Kammerer et al., 2021), její přítomnost v případě výměny expert­
ních informací je, alespoň v evropském kontextu, spíše překvapivá (Wagner et 
al., 2021). Výslednou ideologickou segmentaci výměny expertních informací pak 
lze považovat za překážku kompromisní tvorby politik (srov. Ocelík et al., 2019).

Oba zahrnuté dyadické mechanismy, konkrétně strhávání vazeb na základě 
spolupráce, resp. vnímaného vlivu, jsou přítomné. Znatelně vyšší efekt spoluprá­
ce dále naznačuje, že výměna expertních informací je do značné míry podmíněna 
existující segmentací subsystému – nejspíše na úrovni ideologicky homogenních 
koalic. Mezi strukturními mechanismy zachycujícími procesy sebeorganizace sítě 
vidíme tendence k reciprocitě, tranzitivitě a decentralizaci příchozích vazeb. Prv­
ní dva efekty jsou očekávané, neboť reciprocita a tranzitivita typicky zvyšují dů­
věru a odolnost vztahů mezi organizacemi, tj. vlastnosti důležité v konfliktních 
prostředích. Naproti tomu decentralizace příchozích vazeb je spíše překvapivá, 
protože lze očekávat, že expertní informace budou preferenčně cíleny na užší 
skupinu aktérů charakterizovaných klíčovou pozicí v politickém procesu – typic­
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ky ministerstva. Dílčím vysvětlením tohoto výsledku může být přítomnost inter­
organizační homofilie a  segmentace interakcí na základě koaliční příslušnosti 
(viz Ocelík et al., 2019) přispívající k rovnoměrnější distribuci expertních infor­
mací mezi skupinami organizací definovaných funkcionální podobností (typicky 
výzkumné organizace) a také „spojenci“ v rámci koalic. 

Síť organizací v českém uhelném sektoru, kterou jsme zde studovali jako 
empirický příklad, lze charakterizovat jako orientovanou unimodální uniplexní 
binární průřezovou síť. Znamená to, že jako závislá proměnná v analýze figuruje 
síť v  jednom časovém bodě s  jedním typem orientovaných vazeb, které nemají 
žádnou sílu a kde je jen jeden typ uzlů. Takováto síť patří mezi ty nejčastěji se 
vyskytující ve společenskovědním výzkumu a také nejčastěji analyzované, na něž 
je možné aplikovat takřka všechny možné nástroje v rámci ERGM. ERGM však 
lze využít i v případě méně běžných typů sítí. Sítě neorientované představují vů­
bec nejsnazší případ, neboť nerozlišení směru vazeb značně snižuje komplexitu 
modelovaných konfigurací i simulace, přičemž jinak platí ty samé principy, které 
jsme předestřeli výše. 

Bimodální (two-mode) či bipartitní (bipartite) sítě představují případ, kdy se 
v síti vyskytují dva typy uzlů (mody), přičemž vazby jsou definovány jen napříč 
mody, nikoliv v nich. Typicky se jedná o aktéry na jedné straně a jejich skupiny 
či afiliace na straně druhé, přičemž vazba znamená „býti členem“. I bipartitní 
sítě lze modelovat pomocí ERGM (Wang, Pattison et al. 2013), a to jak v MPNetu, 
tak ve statnetu. Spojením alespoň jedné unimodální sítě s alespoň jednou další 
bipartitiní sítí, které sdílejí jeden mód, pak vzniká tzv. víceúrovňová síť (multi-
level network; Wang, Robins et al. 2013). Víceúrovňové sítě skýtají vysokou míru 
komplexity, protože zahrnují nejen konfigurace unimodálních a bipartitních sítí, 
ale také konfigurace jejich kombinací. Prakticky lze ERGM na víceúrovňové sítě 
aplikovat v MPNetu.

I pro multiplexní sítě existují extenze ERGM. Multiplexní (či někdy též mul­
tivariační) sítě jsou takové sítě, v nichž je definováno více typů vazeb mezi jednou 
množinou uzlů. Jak jsme již předeslali výše, i naše síť je multiplexní, neboť máme 
celkem 68 uzlů a mezi nimi tři typy vazeb – výměnu informací, spolupráci a vní­
maný vliv. Naše analýza se ovšem zaměřila na vysvětlení sítě výměny informací 
mezi organizacemi, přičemž jako kovariáty v modelu byly využity i zbylé dvě 
sítě. Plně multiplexní ERGM analýza by měla jako závisle proměnné dvě nebo 
více typů vazeb zároveň, přičemž možné konfigurace nabývají na komplexitě. 
Lze tak modelovat prostý spoluvýskyt různých typů vazeb až po multiplexní 
formy triadické uzávěry. V praxi lze modelovat dva typy vazeb zároveň pomocí 
programu XPNet.

Vazby v sítích zkoumaných v této stati byly všechny pojímány jako binár­
ní nebo též dichotomické. Znamená to, že u  takových vazeb rozlišujeme pou­
ze jejich přítomnost nebo absenci. V řadě empirických příkladů však může být 
žádoucí zohlednit i různé typy síly vazeb (např. počet telefonních hovorů nebo 
frekvence společného výskytu na daném místě), což je případ tzv. ohodnocených 
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či vážených sítí (valued, resp. weighted networks). Rozšíření ERGM na tento typ dat 
není triviální, neboť zde jednoduše nestačí výchozí statistický aparát binární lo­
gistické regrese. V současnosti sice existuje implementované rozšíření ERGM na 
vážené sítě v balíku ergm.count (Krivitsky, 2012), který je součástí prostředí statnet 
v R, toto rozšíření však doposud nabízí jen několik málo konfigurací pro praktic­
ké užití v modelech. Výchozí myšlenkou tohoto rozšíření je, že se modeluje nejen 
struktura sítě, ale současně také rozdělení hodnoty vazeb v síti.

Konečně, námi zkoumaná síť je statická, tj. založená na průřezových datech 
mapujících strukturu sítě v jednom časovém období. Sítě se nicméně v čase mění 
– existující vazby se rozpadají, nové vznikají, mění se atributy uzlů atd. Změnu 
sítí v  čase lze také modelovat pomocí ERGM za předpokladu, že výzkumníci 
mají k dispozici longitudinální síťová data. Prvním rozšířením ERGM na longi­
tudinální data byl tzv. TERGM (temporal ERGM; Hanneke et al., 2010). TERGM je 
autoregresivní model, takže předchozí stavy sítě v něm figurují jako predikto­
ry stavu v následujících diskrétních časových úsecích. Tento předpoklad se ale 
v praxi ukazuje jako problematický, protože čím více změn v síti mezi vlnami je, 
tím více jsou odhady TERGM nepřesné (Block et al., 2018). Jako alternativa byl 
proto vyvinut STERGM (separable temporal ERGM; Krivitsky a Handcock, 2014), 
který rozkládá efekt jednotlivých relačních mechanismů na změny v síti na dvě 
komponenty: vznik nových vazeb a  rozpad vazeb stávajících. Díky tomu jsou 
STERGM nejen substantivně zajímavější než TERGM, ale také využívají více in­
formací v  longitudinálních datech. Další alternativou pro modelování panelo­
vých síťových dat jsou na aktéry orientované stochastické modely (stochastic actor-
-oriented model; SAOM; Snijders, 1996; Snijders et al., 2010). Tyto modely s ERGM 
sdílí stejnou výchozí logiku, tedy že relační mechanismy lze operacionalizovat 
jako konfigurace a jejich efekt lze následně modelovat prostřednictvím simulací. 
V čem se ale SAOM liší je, jak jejich název napovídá, orientace na aktéry. SAOM 
předpokládají, že uzly jsou aktéři nadaní schopností jednat (tj. formovat své 
vazby) tak, aby jim jejich pozice v síti co nejvíce vyhovovala. Výsledné odhady 
parametrů potom udávají, které mechanismy táhnou změny v dané síti v čase, 
přičemž je lze přímo interpretovat jako preference aktérů pro navazování vazeb 
v  rámci určitých konfigurací. SAOM jsou implementovány v  rozsáhlém balíku 
RSiena v R, který je doprovozený detailním manuálem (Ripley et al., 2019).

Při aplikaci jakékoli metody výzkumu musíme vždy dbát na její omeze­
ní. Kromě standardních omezení, která známe z klasické statistické analýzy, je 
při užití ERGM třeba brát v úvahu rovněž vyšší citlivost vůči chybějícím datům 
(platí pro SNA obecně), výpočetní náročnost v případě větších sítí a/nebo kom­
plexnějších specifikací modelů a v důsledku překotného vývoje ERGM také do­
sud neustálenou dobrou praxi a ne zcela kodifikovanou terminologii. Posledně 
jmenované je patrné zejména při srovnání balíků statnet a MPnet užívajících pro 
tytéž konfigurace odlišná pojmenování. Úspěch ERGM rovněž může navádět 
k využívání tohoto způsobu modelování sítí i tam, kde by bylo vhodnější využít 
jiné modely či přístupy. Pokud je ovšem naším záměrem porozumět procesům 
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formování vazeb uvnitř ohraničeného souboru uzlů, ERGM nabízí robustní a ši­
roce využitelný rámec statistického modelování, který je rozvíjen ruku v  ruce 
s komplexními společenskovědními teoriemi.
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